Raspberry Pi 4B 同步控制两个舵机 实现颜色跟踪
Posted ʚVVcatɞ
tags:
篇首语:本文由小常识网(cha138.com)小编为大家整理,主要介绍了Raspberry Pi 4B 同步控制两个舵机 实现颜色跟踪相关的知识,希望对你有一定的参考价值。
组件:
- Raspberry Pi 4B 2G
- 5V TS90A 舵机 2个
- 转动角度:0°~180°
- 工作电压:4.8V-5V
- 控制信号:PWM 50HZ/0.5-2.5MS
- 摄像头
环境
- Python:3.7.3
TS90A 舵机如下图:
两个舵机连接树莓派如下图:
舵机三条线定义:
- 棕色GND
- 红色VCC 4.8-7.2V 一般用5V
- 橙色:脉冲输入接树莓派的GPIO口
参数:
- 无负载速度:0.09秒/60度(4.8V)
- 从 0 ~180° 大约需要 0.27 s,所以设定 sleep(0.3) 延时 0.3s 完成旋转度数
公式:
dutycycle = 1.8 + angle / 360 * 20
from time import sleep
import RPi.GPIO as GPIO
import sys
GPIO.setmode(GPIO.BCM)
GPIO.setwarnings(False)
gpio_io1 = 18
gpio_io2 = 23
GPIO.setup(gpio_io1, GPIO.OUT)
GPIO.setup(gpio_io2, GPIO.OUT)
def setServoAngle(servo, angle):
assert angle >=0 and angle <= 180
pwm = GPIO.PWM(servo, 50)
pwm.start(8)
dutyCycle = 1.8 + angle / 360 * 20
pwm.ChangeDutyCycle(dutyCycle)
sleep(0.3)
pwm.stop()
if __name__ == '__main__':
if len(sys.argv) == 1:
setServoAngle(gpio_io1, 90)
setServoAngle(gpio_io2, 90)
else:
setServoAngle(gpio_io1, int(sys.argv[1]))
setServoAngle(gpio_io2, int(sys.argv[2]))
GPIO.cleanup()
以下代码实现 两个舵机 + 摄像头颜色跟踪
import numpy as np
import math
global picture
picture = np.ones((240,320,3),dtype =np.uint8)*255
import PID
#显示摄像头组件
import cv2
import time
# 线程功能操作库
import threading
from time import sleep
import RPi.GPIO as GPIO
import sys
GPIO.setmode(GPIO.BCM)
GPIO.setwarnings(False)
gpio_io1 = 18
gpio_io2 = 23
GPIO.setup(gpio_io1, GPIO.OUT)
GPIO.setup(gpio_io2, GPIO.OUT)
def setServoAngle(servo, angle):
assert angle >=0 and angle <= 180
pwm = GPIO.PWM(servo, 50)
pwm.start(8)
dutyCycle = 1.8 + angle / 360 * 20
pwm.ChangeDutyCycle(dutyCycle)
sleep(0.3)
pwm.stop()
image = cv2.VideoCapture(0)
image.set(3, 320)
image.set(4, 240)
image.set(5, 30) #设置帧率
image.set(cv2.CAP_PROP_FOURCC, cv2.VideoWriter.fourcc('M', 'J', 'P', 'G'))
image.set(cv2.CAP_PROP_BRIGHTNESS, 62) #设置亮度 -64 - 64 0.0
image.set(cv2.CAP_PROP_CONTRAST, 63) #设置对比度 -64 - 64 2.0
image.set(cv2.CAP_PROP_EXPOSURE, 4800) #设置曝光值 1.0 - 5000 156.0
ret, frame = image.read()
global g_mode
g_mode = 0
global color_x, color_y, color_radius
color_x = color_y = color_radius = 0
global target_valuex
target_valuex = 1500
global target_valuey
target_valuey = 1500
global color_lower
#color_lower = np.array([0, 43, 46])
global color_upper
#color_upper = np.array([10, 255, 255])
color_lower = np.array([0,70,72])
color_upper = np.array([7, 255, 255])
xservo_pid = PID.PositionalPID(1.1, 0.2, 0.8)
yservo_pid = PID.PositionalPID(0.8, 0.2, 0.8)
setServoAngle(gpio_io1, 90)
setServoAngle(gpio_io2, 90)
def test():
global color_lower, color_upper, g_mode, first_read, while_cnt
global target_valuex, target_valuey, color_x, target_servox,picture
t_start = time.time()
fps = 0
ret, frame = image.read()
#frame = cv2.resize(frame, (300, 300))
frame = cv2.GaussianBlur(frame,(5,5),0)
first_read = 1
while_cnt = 0
time.sleep(1)
while True:
ret, frame = image.read()
#frame = cv2.resize(frame, (300, 300))
#frame = cv2.GaussianBlur(frame,(3,3),0)
hsv = cv2.cvtColor(frame,cv2.COLOR_BGR2HSV)
mask = cv2.inRange(hsv,color_lower,color_upper)
mask = cv2.erode(mask,None,iterations=2)
mask = cv2.dilate(mask,None,iterations=2)
mask = cv2.GaussianBlur(mask,(5,5),0)
cnts = cv2.findContours(mask.copy(),cv2.RETR_EXTERNAL,cv2.CHAIN_APPROX_SIMPLE)[-2]
if len(cnts) > 0:
cnt = max (cnts, key = cv2.contourArea)
(color_x,color_y),color_radius = cv2.minEnclosingCircle(cnt)
if color_radius > 10:
# 将检测到的颜色用原形线圈标记出来
cv2.circle(frame,(int(color_x),int(color_y)),int(color_radius),(255,0,255),2)
if math.fabs(150 - color_x) > 10:
xservo_pid.SystemOutput = color_x
xservo_pid.SetStepSignal(150)
xservo_pid.SetInertiaTime(0.01, 0.1)
target_valuex = int(1500+xservo_pid.SystemOutput)
target_servox = int((target_valuex-500)/10)
# 将云台转动至PID调校位置
if target_servox > 180:
target_servox = 180
if target_servox < 0:
target_servox = 0
setServoAngle(gpio_io1, target_servox)
if math.fabs(150 - color_y) > 10:
# 输入Y轴方向参数PID控制输入
yservo_pid.SystemOutput = color_y
yservo_pid.SetStepSignal(150)
yservo_pid.SetInertiaTime(0.01, 0.1)
target_valuey = int(1500-yservo_pid.SystemOutput)
target_servoy = int((target_valuey-500)/10)
if target_servoy > 180:
target_servoy = 180
if target_servoy < 0:
target_servoy = 0
#print(target_servoy)
setServoAngle(gpio_io2, target_servoy)
fps = fps + 1
mfps = fps / (time.time() - t_start)
cv2.putText(frame, "FPS " + str(int(mfps)), (40,40), cv2.FONT_HERSHEY_SIMPLEX, 0.8, (0,255,255), 3)
# 实时传回图像数据进行显示
cv2.imshow('capture', frame)
# 检测按键
k = cv2.waitKey(1)
if k == 27:
break
image.release()
cv2.destroyAllWindows()
if __name__ == '__main__':
test()
PID.py
# PID控制一阶惯性系统测试程序
#*****************************************************************#
# 增量式PID系统 #
#*****************************************************************#
class IncrementalPID:
def __init__(self, P, I, D):
self.Kp = P
self.Ki = I
self.Kd = D
self.PIDOutput = 0.0 #PID控制器输出
self.SystemOutput = 0.0 #系统输出值
self.LastSystemOutput = 0.0 #上次系统输出值
self.Error = 0.0 #输出值与输入值的偏差
self.LastError = 0.0
self.LastLastError = 0.0
#设置PID控制器参数
def SetStepSignal(self,StepSignal):
self.Error = StepSignal - self.SystemOutput
IncrementValue = self.Kp * (self.Error - self.LastError) +\\
self.Ki * self.Error +\\
self.Kd * (self.Error - 2 * self.LastError + self.LastLastError)
self.PIDOutput += IncrementValue
self.LastLastError = self.LastError
self.LastError = self.Error
#设置一阶惯性环节系统 其中InertiaTime为惯性时间常数
def SetInertiaTime(self,InertiaTime,SampleTime):
self.SystemOutput = (InertiaTime * self.LastSystemOutput + \\
SampleTime * self.PIDOutput) / (SampleTime + InertiaTime)
self.LastSystemOutput = self.SystemOutput
# *****************************************************************#
# 位置式PID系统 #
# *****************************************************************#
class PositionalPID:
def __init__(self, P, I, D):
self.Kp = P
self.Ki = I
self.Kd = D
self.SystemOutput = 0.0
self.ResultValueBack = 0.0
self.PidOutput = 0.0
self.PIDErrADD = 0.0
self.ErrBack = 0.0
#设置PID控制器参数
def SetStepSignal(self,StepSignal):
Err = StepSignal - self.SystemOutput
KpWork = self.Kp * Err
KiWork = self.Ki * self.PIDErrADD
KdWork = self.Kd * (Err - self.ErrBack)
self.PidOutput = KpWork + KiWork + KdWork
self.PIDErrADD += Err
if self.PIDErrADD > 2000:
self.PIDErrADD = 2000
if self.PIDErrADD < -2500:
self.PIDErrADD = -2500
self.ErrBack = Err
#设置一阶惯性环节系统 其中InertiaTime为惯性时间常数
def SetInertiaTime(self, InertiaTime,SampleTime):
self.SystemOutput = (InertiaTime * self.ResultValueBack + \\
SampleTime * self.PidOutput) / (SampleTime + InertiaTime)
self.ResultValueBack = self.SystemOutput
以上是关于Raspberry Pi 4B 同步控制两个舵机 实现颜色跟踪的主要内容,如果未能解决你的问题,请参考以下文章
树莓派(Raspberry Pi)4B无界面安装 Raspberry Pi 系统篇