Pytorch Note53 TensorBoard 可视化
Posted 风信子的猫Redamancy
tags:
篇首语:本文由小常识网(cha138.com)小编为大家整理,主要介绍了Pytorch Note53 TensorBoard 可视化相关的知识,希望对你有一定的参考价值。
Pytorch Note53 TensorBoard 可视化
文章目录
全部笔记的汇总贴: Pytorch Note 快乐星球
TensorBoard是Tensorflow的可视化工具,它可以通过Tensorflow程序运行过程中输出的日志文件可视化Tensorflow程序的运行状态。TensorBoard和Tensorflow程序跑在不同的进程中,TensorBoard会自动读取最新的TensorFlow日志文件,并呈现当前TensorFlow程序运行的最新状态。
当然除了Tensorflow,也可以可视化我们的Pytorch
安装TensorBoard
首先安装TensorBoard是很简单的,我们用cmd打开我们的命令行,然后接着输入以下命令
pip install tensorboard
接着成功安装即可
我们可以测试是否安装成功,可以在我们cmd命令中输入以下命令
tensorboard --logdir=D:\\
如果有结果,就说明我们安装成功了
TensorBoard 的使用
安装完成后,我们用一个例子来演示一下TensorBoard的可视化
# imports
import matplotlib.pyplot as plt
import numpy as np
import torch
import torchvision
import torchvision.transforms as transforms
import torch.nn as nn
import torch.nn.functional as F
import torch.optim as optim
# transforms
transform = transforms.Compose(
[transforms.ToTensor(),
transforms.Normalize((0.5,), (0.5,))])
# datasets
trainset = torchvision.datasets.FashionMNIST('./data',
download=True,
train=True,
transform=transform)
testset = torchvision.datasets.FashionMNIST('./data',
download=True,
train=False,
transform=transform)
# dataloaders
trainloader = torch.utils.data.DataLoader(trainset, batch_size=4,
shuffle=True, num_workers=2)
testloader = torch.utils.data.DataLoader(testset, batch_size=4,
shuffle=False, num_workers=2)
# constant for classes
classes = ('T-shirt/top', 'Trouser', 'Pullover', 'Dress', 'Coat',
'Sandal', 'Shirt', 'Sneaker', 'Bag', 'Ankle Boot')
# helper function to show an image
# (used in the `plot_classes_preds` function below)
def matplotlib_imshow(img, one_channel=False):
if one_channel:
img = img.mean(dim=0)
img = img / 2 + 0.5 # unnormalize
npimg = img.numpy()
if one_channel:
plt.imshow(npimg, cmap="Greys")
else:
plt.imshow(np.transpose(npimg, (1, 2, 0)))
我们将在该教程中定义一个类似的模型架构,仅需进行少量修改即可解决以下事实:图像现在是一个通道而不是三个通道,而图像是28x28而不是32x32:
class Net(nn.Module):
def __init__(self):
super(Net, self).__init__()
self.conv1 = nn.Conv2d(1, 6, 5)
self.pool = nn.MaxPool2d(2, 2)
self.conv2 = nn.Conv2d(6, 16, 5)
self.fc1 = nn.Linear(16 * 4 * 4, 120)
self.fc2 = nn.Linear(120, 84)
self.fc3 = nn.Linear(84, 10)
def forward(self, x):
x = self.pool(F.relu(self.conv1(x)))
x = self.pool(F.relu(self.conv2(x)))
x = x.view(-1, 16 * 4 * 4)
x = F.relu(self.fc1(x))
x = F.relu(self.fc2(x))
x = self.fc3(x)
return x
net = Net()
我们将在之前定义相同的optimizer和criterion:
criterion = nn.CrossEntropyLoss()
optimizer = optim.SGD(net.parameters(), lr=0.001, momentum=0.9)
1. TensorBoard 设置
现在,我们将设置 TensorBoard,从torch.utils导入tensorboard并定义SummaryWriter,这是将信息写入 TensorBoard 的关键对象。
from torch.utils.tensorboard import SummaryWriter
# default `log_dir` is "runs" - we'll be more specific here
writer = SummaryWriter('runs/fashion_mnist_experiment_1')
请注意,仅此行会创建一个runs/fashion_mnist_experiment_1文件夹。
2. 写入 TensorBoard
现在,使用make_grid将图像写入到 TensorBoard 中,具体来说就是网格。
# get some random training images
dataiter = iter(trainloader)
images, labels = dataiter.next()
# create grid of images
img_grid = torchvision.utils.make_grid(images)
# show images
matplotlib_imshow(img_grid, one_channel=True)
# write to tensorboard
writer.add_image('four_fashion_mnist_images', img_grid)
images.shape
torch.Size([4, 1, 28, 28])
启动TensorBoard
运行下面的命令可以启动TensorBoard
load_ext tensorboard
tensorboard --logdir=runs
运行上面的命令会启动一个服务,这个父母的端口默认为6006。通过浏览器打开localhost:6006。使用–port参数可以改变启动服务的端口。
打开TensorBoard如下:
3. 使用 TensorBoard 检查模型
TensorBoard 的优势之一是其可视化复杂模型结构的能力。 让我们可视化我们构建的模型。
writer.add_graph(net, images)
writer.close()
继续并双击Net以展开它,查看构成模型的各个操作的详细视图。
TensorBoard 具有非常方便的功能,可在低维空间中可视化高维数据,例如图像数据。 接下来我们将介绍这一点。
[外链图片转存失败,源站可能有防盗链机制,建议将图片保存下来直接上传(img-S8hmk7Nm-1630998558998)(C:\\Users\\86137\\AppData\\Roaming\\Typora\\typora-user-images\\image-20210907144142750.png)]
4. 在 TensorBoard 中添加“投影仪”
我们可以通过add_embedding方法可视化高维数据的低维表示
import tensorboard as tb
import tensorflow as tf
tf.io.gfile = tb.compat.tensorflow_stub.io.gfile
# helper function
def select_n_random(data, labels, n=100):
'''
Selects n random datapoints and their corresponding labels from a dataset
'''
assert len(data) == len(labels)
perm = torch.randperm(len(data))
return data[perm][:n], labels[perm][:n]
# select random images and their target indices
images, labels = select_n_random(trainset.data, trainset.targets)
# get the class labels for each image
class_labels = [classes[lab] for lab in labels]
# log embeddings
features = images.view(-1, 28 * 28)
writer.add_embedding(features,
metadata=class_labels,
label_img=images.unsqueeze(1))
writer.close()
5. 使用 TensorBoard 跟踪模型训练
在前面的示例中,我们仅每 2000 次迭代打印该模型的运行损失。 现在,我们将运行损失记录到 TensorBoard 中,并通过plot_classes_preds函数查看模型所做的预测。
# helper functions
def images_to_probs(net, images):
'''
Generates predictions and corresponding probabilities from a trained
network and a list of images
'''
output = net(images)
# convert output probabilities to predicted class
_, preds_tensor = torch.max(output, 1)
preds = np.squeeze(preds_tensor.numpy())
return preds, [F.softmax(el, dim=0)[i].item() for i, el in zip(preds, output)]
def plot_classes_preds(net, images, labels):
'''
Generates matplotlib Figure using a trained network, along with images
and labels from a batch, that shows the network's top prediction along
with its probability, alongside the actual label, coloring this
information based on whether the prediction was correct or not.
Uses the "images_to_probs" function.
'''
preds, probs = images_to_probs(net, images)
# plot the images in the batch, along with predicted and true labels
fig = plt.figure(figsize=(12, 48))
for idx in np.arange(4):
ax = fig.add_subplot(1, 4, idx+1, xticks=[], yticks=[])
matplotlib_imshow(images[idx], one_channel=True)
ax.set_title("{0}, {1:.1f}%\\n(label: {2})".format(
classes[preds[idx]],
probs[idx] * 100.0,
classes[labels[idx]]),
color=("green" if preds[idx]==labels[idx].item() else "red"))
return fig
running_loss = 0.0
for epoch in range(1): # loop over the dataset multiple times
for i, data in enumerate(trainloader, 0):
# get the inputs; data is a list of [inputs, labels]
inputs, labels = data
# zero the parameter gradients
optimizer.zero_grad()
# forward + backward + optimize
outputs = net(inputs)
loss = criterion(outputs, labels)
loss.backward()
optimizer.step()
running_loss += loss.item()
if i % 1000 == 999: # every 1000 mini-batches...
# ...log the running loss
writer.add_scalar('training loss',
running_loss / 1000,
epoch * len(trainloader) + i)
# ...log a Matplotlib Figure showing the model's predictions on a
# random mini-batch
writer.add_figure('predictions vs. actuals',
plot_classes_preds(net, inputs, labels),
global_step=epoch * len(trainloader) + i)
running_loss = 0.0
print('Finished Training')
6. 使用 TensorBoard 评估经过训练的模型
可以得到每一类的概率和最后我们的PR曲线
# 1\\. gets the probability predictions in a test_size x num_classes Tensor
# 2\\. gets the preds in a test_size Tensor
# takes ~10 seconds to run
class_probs = []
class_preds = []
with torch.no_grad():
for data in testloader:
images, labels = data
output = net(images)
class_probs_batch = [F.softmax(el, dim=0) for el in output]
_, class_preds_batch = torch.max(output, 1)
class_probs.append(class_probs_batch)
class_preds.append(class_preds_batch)
test_probs = torch.cat([torch.stack(batch) for batch in class_probs])
test_preds = torch.cat(class_preds)
# helper function
def add_pr_curve_tensorboard(class_index, test_probs, test_preds, global_step=0):
'''
Takes in a "class_index" from 0 to 9 and plots the corresponding
precision-recall curve
'''
tensorboard_preds = test_preds == class_index
tensorboard_probs = test_probs[:, class_index]
writer.add_pr_curve(classes[class_index],
tensorboard_preds,
tensorboard_probs,
global_step=global_step)
writer.close()
# plot all the pr curves
for i in range(len(classes)):
add_pr_curve_tensorboard(i, test_probs, test_preds)
常见的问题
这里会列出几个,我在使用TensorBoard中出现的问题,这样也方便大家不走弯路
1.杀死进程
我们可以利用以下命令杀死所有TensorBoard的进程
taskkill /im tensorboard.exe /f
成功: 已终止进程 "tensorboard.exe",其 PID 为 6948。 成功: 已终止进程 "tensorboard.exe",其 PID 为 25888。
或者会出现
错误: 没有找到进程 "tensorboard.exe"。
说明已经没有tensorboard的进程了。
如果不可以,我们也可以换一个端口也就ok了
2.端口被占用
前面有说过,我们的默认端口是6006,当我们有多个程序的时候,我们可能需要换个端口,我们就可以修改我们启动TensorBoard的命令,比如我们将我们的端口改为6008
tensorboard --logdir=runs --port=6008
这样即可,我们打开端口为6008的就成功了。
3.重启TensorBoard
reload_ext tensorboard
例子
其实对于我们来说,有时候我们主要是用TensorBoard来可视化我们的损失和准确率,而不用那么多的结果,所以对我们来说,我们用的很简单,以下举个例子
writer = SummaryWriter()
def get_acc(output, label):
total = output.shape[0]
_, pred_label = output.max(1)
num_correct = (pred_label == label).sum().data[0]
return num_correct / total
if torch.cuda.is_available():
net = net.cuda()
prev_time = datetime.now()
for epoch in range(30):
train_loss = 0
train_acc = 0
net = net.train()
for im, label in train_data:
if torch.cuda.is_available():
im = Variable(im.cuda()) # (bs, 3, h, w)
label = Variable(label.cuda()) # (bs, h, w)
else:
im = Variable(im)
label = Variable(label)
# forward
output = net(im)
loss = criterion(output, label)
# backward
optimizer.zero_grad()
loss.backward()
optimizer.step()
train_loss += loss.data[0]
train_acc += get_acc(output, label)
cur_time = datetime.now()
h, remainder = divmod((cur_time - prev_time).seconds, 3600)
m, s = divmod(remainder, 60)
time_str = "Time %02d:%02d:%02d" % (h, m, s)
valid_loss = 0
valid_acc = 0
net = net.eval()
for im, label in valid_data:
if torch.cuda.is_available():
im = Variable(im.cuda(), volatile=True)
label = Variable(label.cuda(), volatile=True)
else:
im = Variable(im, volatile=True)
label = Variable(label, volatile=True)
output = net(im)
loss = criterion(output, label)
valid_loss += loss.data[0]
valid_acc += get_acc(output, label)
epoch_str = (
"Epoch %d. Train Loss: %f, Train Acc: %f, Valid Loss: %f, Valid Acc: %f, "
% (epoch, train_loss / len(train_data),
train_acc / len(train_data), valid_loss / len(valid_data),
valid_acc / len(valid_data)))
prev_time = cur_time
# ====================== 使用 tensorboard ==================
writer.add_scalars('Loss', {'train': train_loss / len(train_data),
'valid': valid_loss / len(valid_data)}, epoch)
writer.add_scalars('Acc', {'train': train_acc / len(train_data),
'valid': valid_acc / len(valid_data)}, epoch)
# =========================================================
print(epoch_str + time_str)
以上是关于Pytorch Note53 TensorBoard 可视化的主要内容,如果未能解决你的问题,请参考以下文章