简单对抗神经网络GAN实现与讲解-图片对抗

Posted 行码阁119

tags:

篇首语:本文由小常识网(cha138.com)小编为大家整理,主要介绍了简单对抗神经网络GAN实现与讲解-图片对抗相关的知识,希望对你有一定的参考价值。

1、理论讲解,清晰易懂:

一文看懂「生成对抗网络 - GAN」基本原理+10种典型算法+13种应用 (easyai.tech)

2、代码实现集合:

GitHub - eriklindernoren/Keras-GAN: Keras implementations of Generative Adversarial Networks.

3、这里简单说以下 

GNN的通俗理解基于两个对手之间相互博弈,共同进步。类似于:假设一个城市治安混乱,很快,这个城市里就会出现无数的小偷。在这些小偷中,有的可能是盗窃高手,有的可能毫无技术可言。假如这个城市开始整饬其治安,突然开展一场打击犯罪的「运动」,警察们开始恢复城市中的巡逻,很快,一批「学艺不精」的小偷就被捉住了。之所以捉住的是那些没有技术含量的小偷,是因为警察们的技术也不行了,在捉住一批低端小偷后,城市的治安水平变得怎样倒还不好说,但很明显,城市里小偷们的平均水平已经大大提高了。

在图像处理方面可以这么理解:你用真实图片和生成器(Generater)生成的虚假图片共同训练判别器(Discriminator),以致于其能够达到区分真假的功能。生成器(Generater)利用你随机输入的数字生成其对应与真实图片类似的图片,反复训练以至于能够生成越来越逼真的图片。

其图片如下:

生成图片和训练代码用的是卷积。

4、其损失函数

其实对于两者的损失函数可以分开考虑。对于判别器(Discriminator),就是其真实图片损失函数和制造的假图片损失函数求和。valid、fake对应的是其虚假标签;imgs,gen_imgs分别是真实图片和虚假图片。

       d_loss_real = self.discriminator.train_on_batch(imgs, valid)
       d_loss_fake = self.discriminator.train_on_batch(gen_imgs, fake)

对于生成器(Generater),其先将判别器(Discriminator)设置为预测状态,然后X将传入生成器(Generater),将生成的虚假图片输入判别器(Discriminator)进行判别,这样就可以达到更新生成器(Generater)的参数。这里0(真)、1(假)主要是当Discriminator识别效果很好,说明Generater需要努力学习,才能继续蒙混过关,所以其损失值大;反之亦然。

 其代码实现时将其标签直接传为了1(真实图片):

 5、其代码实现:

代码时相对于Mnist实现,通过生成Mnist图像蒙混判别器(Discriminator)。

from __future__ import print_function, division


import tensorflow as tf
import os
 
os.environ["CUDA_VISIBLE_DEVICES"] = "0"
config = tf.ConfigProto(allow_soft_placement = True)
gpu_options = tf.GPUOptions(per_process_gpu_memory_fraction = 0.5)
config.gpu_options.allow_growth = True
 
sess0 = tf.InteractiveSession(config = config)

from keras.datasets import mnist
from keras.layers import Input, Dense, Reshape, Flatten, Dropout
from keras.layers import BatchNormalization, Activation, ZeroPadding2D
from keras.layers.advanced_activations import LeakyReLU
from keras.layers.convolutional import UpSampling2D, Conv2D
from keras.models import Sequential, Model
from keras.optimizers import Adam

import matplotlib.pyplot as plt

import sys

import numpy as np

class GAN():
    def __init__(self):
        self.img_rows = 28
        self.img_cols = 28
        self.channels = 1
        self.img_shape = (self.img_rows, self.img_cols, self.channels)
        self.latent_dim = 100

        optimizer = Adam(0.0002, 0.5)

        # Build and compile the discriminator
        self.discriminator = self.build_discriminator()
        self.discriminator.compile(loss='binary_crossentropy',
            optimizer=optimizer,
            metrics=['accuracy'])

        # Build the generator
        self.generator = self.build_generator()

        # The generator takes noise as input and generates imgs
        z = Input(shape=(self.latent_dim,))
        img = self.generator(z)

        # For the combined model we will only train the generator
        self.discriminator.trainable = False

        # The discriminator takes generated images as input and determines validity
        validity = self.discriminator(img)

        # The combined model  (stacked generator and discriminator)
        # Trains the generator to fool the discriminator
        self.combined = Model(z, validity)
        self.combined.compile(loss='binary_crossentropy', optimizer=optimizer)


    def build_generator(self):

        model = Sequential()

        model.add(Dense(256, input_dim=self.latent_dim))
        model.add(LeakyReLU(alpha=0.2))
        model.add(BatchNormalization(momentum=0.8))
        model.add(Dense(512))
        model.add(LeakyReLU(alpha=0.2))
        model.add(BatchNormalization(momentum=0.8))
        model.add(Dense(1024))
        model.add(LeakyReLU(alpha=0.2))
        model.add(BatchNormalization(momentum=0.8))
        model.add(Dense(np.prod(self.img_shape), activation='tanh'))
        model.add(Reshape(self.img_shape))

        model.summary()

        noise = Input(shape=(self.latent_dim,))
        img = model(noise)

        return Model(noise, img)

    def build_discriminator(self):

        model = Sequential()

        model.add(Flatten(input_shape=self.img_shape))
        model.add(Dense(512))
        model.add(LeakyReLU(alpha=0.2))
        model.add(Dense(256))
        model.add(LeakyReLU(alpha=0.2))
        model.add(Dense(1, activation='sigmoid'))
        model.summary()

        img = Input(shape=self.img_shape)
        validity = model(img)

        return Model(img, validity)

    def train(self, epochs, batch_size=128, sample_interval=50):

        # Load the dataset
        (X_train, _), (_, _) = mnist.load_data()

        # Rescale -1 to 1
        X_train = X_train / 127.5 - 1.
        X_train = np.expand_dims(X_train, axis=3)

        # Adversarial ground truths
        valid = np.ones((batch_size, 1))
        fake = np.zeros((batch_size, 1))

        for epoch in range(epochs):

            # ---------------------
            #  Train Discriminator
            # ---------------------

            # Select a random batch of images
            idx = np.random.randint(0, X_train.shape[0], batch_size)
            imgs = X_train[idx]

            noise = np.random.normal(0, 1, (batch_size, self.latent_dim))

            # Generate a batch of new images
            gen_imgs = self.generator.predict(noise)

            # Train the discriminator
            d_loss_real = self.discriminator.train_on_batch(imgs, valid)
            d_loss_fake = self.discriminator.train_on_batch(gen_imgs, fake)
            d_loss = 0.5 * np.add(d_loss_real, d_loss_fake)

            # ---------------------
            #  Train Generator
            # ---------------------

            noise = np.random.normal(0, 1, (batch_size, self.latent_dim))

            # Train the generator (to have the discriminator label samples as valid)
            g_loss = self.combined.train_on_batch(noise, valid)

            # Plot the progress
            print ("%d [D loss: %f, acc.: %.2f%%] [G loss: %f]" % (epoch, d_loss[0], 100*d_loss[1], g_loss))

            # If at save interval => save generated image samples
            if epoch % sample_interval == 0:
                self.sample_images(epoch)

    def sample_images(self, epoch):
        r, c = 5, 5
        noise = np.random.normal(0, 1, (r * c, self.latent_dim))
        gen_imgs = self.generator.predict(noise)

        # Rescale images 0 - 1
        gen_imgs = 0.5 * gen_imgs + 0.5

        fig, axs = plt.subplots(r, c)
        cnt = 0
        for i in range(r):
            for j in range(c):
                axs[i,j].imshow(gen_imgs[cnt, :,:,0], cmap='gray')
                axs[i,j].axis('off')
                cnt += 1
        fig.savefig("images/%d.png" % epoch)
        plt.close()


if __name__ == '__main__':
    gan = GAN()
    gan.train(epochs=30000, batch_size=1, sample_interval=200)

其结果如下(训练时间不会很久,有兴趣的可以试试):

 

 

 通过结果可以发现 随着训练步数的增加,生成的图片越来越能以假乱真。

 

 

 

 

 

以上是关于简单对抗神经网络GAN实现与讲解-图片对抗的主要内容,如果未能解决你的问题,请参考以下文章

生成对抗网络(GAN)

GAN (生成对抗网络) 手写数字图片生成

使用PyTorch构建GAN生成对抗网络源码(详细步骤讲解+注释版)02 人脸识别 上

GAN 系列的探索与pytorch实现 (数字对抗样本生成)

使用生成对抗网络(GAN)生成手写字

[Python图像识别] 四十九.图像生成之什么是生成对抗网络GAN?基础原理和代码普及