Scrapy数据建模-构造并发送请求(翻页实现)

Posted ZSYL

tags:

篇首语:本文由小常识网(cha138.com)小编为大家整理,主要介绍了Scrapy数据建模-构造并发送请求(翻页实现)相关的知识,希望对你有一定的参考价值。


学习目标:

  1. 应用 在scrapy项目中进行建模
  2. 应用 构造Request对象,并发送请求
  3. 应用 利用meta参数在不同的解析函数中传递数据

1. 数据建模

通常在做项目的过程中,在items.py中进行数据建模

1.1 为什么建模

  1. 定义item即提前规划好哪些字段需要抓,防止手误,因为定义好之后,在运行过程中,系统会自动检查
  2. 配合注释一起可以清晰的知道要抓取哪些字段,没有定义的字段不能抓取,在目标字段少的时候可以使用字典代替
  3. 使用scrapy的一些特定组件需要Item做支持,如scrapy的ImagesPipeline管道类,百度搜索了解更多

1.2 如何建模

items.py文件中定义要提取的字段:

class MyspiderItem(scrapy.Item): 
    name = scrapy.Field()   # 讲师的名字
    title = scrapy.Field()  # 讲师的职称
    desc = scrapy.Field()   # 讲师的介绍

1.3 如何使用模板类

模板类定义以后需要在爬虫中导入并且实例化,之后的使用方法和使用字典相同

job.py:

from myspider.items import MyspiderItem   # 导入Item,注意路径
...
    def parse(self, response)

        item = MyspiderItem() # 实例化后可直接使用

        item['name'] = node.xpath('./h3/text()').extract_first()
        item['title'] = node.xpath('./h4/text()').extract_first()
        item['desc'] = node.xpath('./p/text()').extract_first()
        
        print(item)

注意:

  1. from myspider.items import MyspiderItem这一行代码中 注意item的正确导入路径,忽略pycharm标记的错误
  2. python中的导入路径要诀:从哪里开始运行,就从哪里开始导入

具体请参考解决Pycharm中from mySpyder.items import myItem报错问题

1.4 开发流程总结

  1. 创建项目

    scrapy startproject 项目名<br/>
  2. 明确目标

    items.py文件中进行建模
  3. 创建爬虫

    3.1 创建爬虫

    scrapy genspider 爬虫名 允许的域

    3.2 完成爬虫

    修改start_urls
    检查修改allowed_domains
    编写解析方法
  4. 保存数据

    pipelines.py文件中定义对数据处理的管道

    settings.py文件中注册启用管道

2. 翻页请求的思路

对于要提取如下图中所有页面上的数据该怎么办?

回顾requests模块是如何实现翻页请求的:

  1. 找到下一页的URL地址
  2. 调用requests.get(url)

scrapy实现翻页的思路:

  1. 找到下一页的url地址
  2. 构造url地址的请求对象,传递给引擎

3. 构造Request对象,并发送请求

3.1 实现方法

  1. 确定url地址
  2. 构造请求,scrapy.Request(url,callback)
    • callback:指定解析函数名称,表示该请求返回的响应使用哪一个函数进行解析
  3. 把请求交给引擎:yield scrapy.Request(url,callback)

3.2 网易招聘爬虫

通过爬取网易招聘的页面的招聘信息,学习如何实现翻页请求

地址:https://hr.163.com/position/list.do

思路分析:

  1. 获取首页的数据
  2. 寻找下一页的地址,进行翻页,获取数据

注意:

  1. 可以在settings中设置ROBOTS协议
# False表示忽略网站的robots.txt协议,默认为True
ROBOTSTXT_OBEY = False
  1. 可以在settings中设置User-Agent:
# scrapy发送的每一个请求的默认UA都是设置的这个User-Agent
USER_AGENT = 'Mozilla/5.0 (Macintosh; Intel Mac OS X 10_12_5) AppleWebKit/537.36 (Khtml, like Gecko) Chrome/59.0.3071.115 Safari/537.36'

3.3 代码实现

在爬虫文件的parse方法中:

......
	# 提取下一页的href
	next_url = response.xpath('//a[contains(text(),">")]/@href').extract_first()

	# 判断是否是最后一页
	if next_url != 'javascript:void(0)':

        # 构造完整url
        url = 'https://hr.163.com/position/list.do' + next_url

		# 构造scrapy.Request对象,并yield给引擎
		# 利用callback参数指定该Request对象之后获取的响应用哪个函数进行解析
    	yield scrapy.Request(url, callback=self.parse)
......

3.4 scrapy.Request的更多参数

scrapy.Request(url[,callback,method="GET",headers,body,cookies,meta,dont_filter=False])

参数解释

  1. 中括号里的参数为可选参数
  2. callback:表示当前的url的响应交给哪个函数去处理
  3. meta:实现数据在不同的解析函数中传递,meta默认带有部分数据,比如下载延迟,请求深度等
  4. dont_filter:默认为False,会过滤请求的url地址,即请求过的url地址不会继续被请求,对需要重复请求的url地址可以把它设置为Ture,比如贴吧的翻页请求,页面的数据总是在变化;start_urls中的地址会被反复请求,否则程序不会启动
  5. method:指定POST或GET请求
  6. headers:接收一个字典,其中不包括cookies
  7. cookies:接收一个字典,专门放置cookies
  8. body:接收json字符串,为POST的数据,发送payload_post请求时使用(在下一章节中会介绍post请求)

4. meta参数的使用

meta的作用:meta可以实现数据在不同的解析函数中的传递

在爬虫文件的parse方法中,提取详情页增加之前callback指定的parse_detail函数:

def parse(self,response):
    ...
    yield scrapy.Request(detail_url, callback=self.parse_detail,meta={"item":item})
...

def parse_detail(self,response):
    #获取之前传入的item
    item = resposne.meta["item"]

特别注意

  1. meta参数是一个字典
  2. meta字典中有一个固定的键proxy,表示代理ip,关于代理ip的使用我们将在scrapy的下载中间件的学习中进行介绍

5. 参考代码

wangyi/spiders/job.py

import scrapy

class JobSpider(scrapy.Spider):
    name = 'job'
    # 2.检查允许的域名
    allowed_domains = ['163.com']
    # 1 设置起始的url
    start_urls = ['https://hr.163.com/position/list.do']

    def parse(self, response):
        # 获取所有的职位节点列表
        node_list = response.xpath('//*[@class="position-tb"]/tbody/tr')
        # print(len(node_list))

        # 遍历所有的职位节点列表
        for num, node in enumerate(node_list):
            # 索引为值除2取余为0的才是含有数据的节点,通过判断进行筛选
            if num % 2 == 0:
                item = {}

                item['name'] = node.xpath('./td[1]/a/text()').extract_first()
                item['link'] = node.xpath('./td[1]/a/@href').extract_first()
                item['depart'] = node.xpath('./td[2]/text()').extract_first()
                item['category'] = node.xpath('./td[3]/text()').extract_first()
                item['type'] = node.xpath('./td[4]/text()').extract_first()
                item['address'] = node.xpath('./td[5]/text()').extract_first()
                item['num'] = node.xpath('./td[6]/text()').extract_first().strip()
                item['date'] = node.xpath('./td[7]/text()').extract_first()
                yield item

        # 翻页处理
        # 获取翻页url
        part_url = response.xpath('//a[contains(text(),">")]/@href').extract_first()

        # 判断是否为最后一页,如果不是最后一页则进行翻页操作
        if part_url != 'javascript:void(0)':
            # 拼接完整翻页url
            next_url = 'https://hr.163.com/position/list.do' + part_url

            yield scrapy.Request(
                url=next_url,
                callback=self.parse
            )

wangyi/items.py

class WangyiItem(scrapy.Item):
    # define the fields for your item here like:

    name = scrapy.Field()
    link = scrapy.Field()
    depart = scrapy.Field()
    category = scrapy.Field()
    type = scrapy.Field()
    address = scrapy.Field()
    num = scrapy.Field()
    date = scrapy.Field()

6. job.py完整代码

import scrapy
from ..items import WangyiItem

class JobSpider(scrapy.Spider):
    name = 'job'
    # 2.检查修改allowed_domains
    allowed_domains = ['163.com']
    # 1. 修改start_urls
    start_urls = ['https://hr.163.com/position/list.do']

    def parse(self, response):
        # 提取数据
        # 获取所有职位节点列表
        node_list = response.xpath('//*[@class="position-tb"]/tbody/tr')
        # print('数目:', len(node_list))

        # 遍历节点列表
        for num, node in enumerate(node_list):
            # print(num, node)
            # 设置过滤条件,将目标节点获取出来
            if num % 2 == 0:
                # 实例化一个item对象
                item = WangyiItem()
                # 将抽取的数据放入item中
                item['name'] = node.xpath('./td[1]/a/text()').extract_first()
                # response.urljoin()用于拼接相对路径的url,可以理解成自动补全
                item['link'] = response.urljoin(node.xpath('./td[1]/a/@href').extract_first())  # 'https://hr.163.com/'
                item['depart'] = node.xpath('./td[2]/text()').extract_first()
                item['category'] = node.xpath('./td[3]/text()').extract_first()
                item['type'] = node.xpath('./td[4]/text()').extract_first()
                item['address'] = node.xpath('./td[5]/text()').extract_first()
                item['num'] = node.xpath('./td[6]/text()').extract_first().strip()
                item['date'] = node.xpath('./td[7]/text()').extract_first()
                # print(item)
                # yield item  # 返回引擎
                # 构建详情页面的请求
                print('=====', item['link'])
                yield scrapy.Request(
                    url=item['link'],
                    callback=self.parse_detail,
                    meta={'item': item}
                )

        # 模拟翻页
        part_url = response.xpath('/html/body/div[2]/div[2]/div[2]/div/a[last()]/@href').extract_first()

        # 判断终止条件
        if part_url != 'javascript:void(0)':
            next_url = response.urljoin(part_url)
            # 构建请求对象,并且返回引擎
            yield scrapy.Request(
                url=next_url,
                callback=self.parse,  # 对应的url由谁来解析(默认parse方法)
            )

    def parse_detail(self, response):
        # 将meta传参获取
        item = response.meta['item']

        # 提取剩余字段数据
        item['duty'] = response.xpath('//div/text()').extract()
        item['require'] = response.xpath('//div/text()').extract()

        # 全部数据采集完毕,返回引擎
        yield item

7. 小结

  1. 完善并使用Item数据类:
  2. 在items.py中完善要爬取的字段
  3. 在爬虫文件中先导入Item
  4. 实力化Item对象后,像字典一样直接使用
  5. 构造Request对象,并发送请求:
  6. 导入scrapy.Request类
  7. 在解析函数中提取url
  8. yield scrapy.Request(url, callback=self.parse_detail, meta={})
  9. 利用meta参数在不同的解析函数中传递数据:
  10. 通过前一个解析函数 yield scrapy.Request(url, callback=self.xxx, meta={}) 来传递meta
  11. 在self.xxx函数中 response.meta.get(‘key’, ‘’) 或 response.meta[‘key’] 的方式取出传递的数据

加油!

感谢!

努力!

以上是关于Scrapy数据建模-构造并发送请求(翻页实现)的主要内容,如果未能解决你的问题,请参考以下文章

给我爬!三天掌握Scrapy

Scrapy框架实战爬取网易严选-苹果12手机热评

Python爬虫之Scrapy框架系列(14)——实战ZH小说爬取多页爬取

在 Scrapy 中发送帖子请求

Python爬虫之Scrapy框架系列(14)——实战ZH小说爬取多页爬取

scrapy.