loj数列分块入门
Posted PushyTao
tags:
篇首语:本文由小常识网(cha138.com)小编为大家整理,主要介绍了loj数列分块入门相关的知识,希望对你有一定的参考价值。
数列分块入门
入门 1-区间加法-单点查询
ll n,a[maxn],lazy[maxn];
int main() {
n = read;
for(int i=1; i<=n; i++) a[i] = read;
int blk = sqrt(n);
for(int ii=1; ii<=n; ii++) {
int op = read,l = read,r = read,c = read;
if( op == 0) {
for(int i=l; i<min(r+1,(l/blk+1)*blk); i++) {
a[i] += c;
}
for(int i=l/blk+1; i<r/blk; i++) {
lazy[i] += c;
}
if(l / blk != r / blk) {
for(int i=r/blk*blk; i<=r; i++) a[i] += c;
}
} else {
printf("%lld\\n",a[r] + lazy[r/blk]);
}
}
return 0;
}
/**
4
1 2 2 3
0 1 3 1
1 0 1 0
0 1 2 2
1 0 2 0
2
5
**/
入门 2-区间加法-区间查询
const int maxn = 1e5 + 7;
ll n, a[maxn];
vector<ll> vet[maxn];
ll blk, lazy[maxn], b[maxn];
void reget(int id) {
vet[id].clear();
for (int i = (id - 1) * blk + 1; i <= min(n, id * blk); i++) {
vet[id].push_back(a[i]);
}
sort(vet[id].begin(), vet[id].end());
}
void update(ll l, ll r, ll c) {
for (int i = l; i <= min(b[l]*blk, r); i++)
a[i] += c;
reget(b[l]);
if (b[l] != b[r]) {
for (int i = (b[r] - 1) * blk + 1; i <= r; i++)
a[i] += c;
reget(b[r]);
}
for (int i = b[l] + 1; i <= b[r] - 1; i++) {
lazy[i] += c;
}
}
ll query(ll l, ll r, ll val) {
ll ret = 0;
for (int i = l; i <= min(b[l]*blk, r); i++) {
if (a[i] + lazy[b[l]] < val)
++ ret;
}
if (b[l] != b[r]) {
for (int i = (b[r] - 1) * blk + 1; i <= r; i++) {
if (a[i] + lazy[b[r]] < val)
++ ret;
}
}
for (int i = b[l] + 1; i <= b[r] - 1; i++) {
int get = val - lazy[i];
// ret += upper_bound(vet[i].begin(),vet[i].end(),get) - lower_bound(vet[i].begin(),vet[i].end(),get);
ret += lower_bound(vet[i].begin(), vet[i].end(), get) - vet[i].begin();
}
return ret;
}
int main() {
n = read;
for (int i = 1; i <= n; i++)
a[i] = read;
blk = sqrt(n);
for (int i = 1; i <= n; i++) {
b[i] = (i - 1) / blk + 1;
vet[b[i]].push_back(a[i]);
}
for (int i = 1; i <= b[n]; i++)
sort(vet[i].begin(), vet[i].end());
for (int i = 1; i <= n; i++) {
int op = read, l = read, r = read, c = read;
if (op == 0)
update(l, r, c);
else
printf("%lld\\n", query(l, r, c * c));
}
return 0;
}
/**
4
1 2 2 3
0 1 3 1
1 1 3 2
1 1 4 1
1 2 3 2
3
0
2
**/
入门 3-区间加法-单点查询
const int maxn = 1e5 + 7;
ll n, a[maxn];
vector<ll> vet[maxn];
ll blk, lazy[maxn], b[maxn];
void reget(int id) {
vet[id].clear();
for (int i = (id - 1) * blk + 1; i <= min(n, id * blk); i++) {
vet[id].push_back(a[i]);
}
sort(vet[id].begin(), vet[id].end());
}
void update(ll l, ll r, ll c) {
for (int i = l; i <= min(b[l]*blk, r); i++)
a[i] += c;
reget(b[l]);
if (b[l] != b[r]) {
for (int i = (b[r] - 1) * blk + 1; i <= r; i++)
a[i] += c;
reget(b[r]);
}
for (int i = b[l] + 1; i <= b[r] - 1; i++) {
lazy[i] += c;
}
}
ll query(ll l, ll r, ll val) {
ll ret = -1;
for (int i = l; i <= min(b[l]*blk, r); i++) {
if (a[i] + lazy[b[l]] < val)
ret = max(ret, a[i] + lazy[b[l]]);
}
if (b[l] != b[r]) {
for (int i = (b[r] - 1) * blk + 1; i <= r; i++) {
if (a[i] + lazy[b[r]] < val)
ret = max(ret, a[i] + lazy[b[r]]);
}
}
for (int i = b[l] + 1; i <= b[r] - 1; i++) {
ll get = val - lazy[i];
vector<ll>::iterator l = lower_bound(vet[i].begin(), vet[i].end(), get);
if (l == vet[i].begin())
continue;
l --;
ret = max(ret, *l + lazy[i]);
}
return ret;
}
int main() {
n = read;
for (int i = 1; i <= n; i++)
a[i] = read;
blk = sqrt(n);
for (int i = 1; i <= n; i++) {
b[i] = (i - 1) / blk + 1;
vet[b[i]].push_back(a[i]);
}
for (int i = 1; i <= b[n]; i++)
sort(vet[i].begin(), vet[i].end());
for (int i = 1; i <= n; i++) {
int op = read, l = read, r = read, c = read;
if (op == 0)
update(l, r, c);
else
printf("%lld\\n", query(l, r, c));
// debug(i);
}
return 0;
}
/**
4
1 2 2 3
0 1 3 1
1 1 4 4
0 1 2 2
1 1 2 4
3
-1
**/
入门 4-区间加法-区间查询
ll n,a[maxn];
ll blk,lazy[maxn],b[maxn],sum[maxn];
void update(ll l,ll r,ll c) {
for(int i=l; i<=min(b[l]*blk,r); i++) a[i] += c,sum[b[l]] += c;
if(b[l] != b[r]) {
for(int i=(b[r] - 1) * blk+1; i<=r; i++) a[i] += c,sum[b[r]] += c;
}
for(int i=b[l]+1; i<=b[r] - 1; i++) {
lazy[i] += c;
}
}
ll query(ll l,ll r,ll val) {
ll ret = 0;
for(int i=l; i<=min(b[l]*blk,r); i++) {
ret += a[i] + lazy[b[l]];
ret %= (val + 1);
}
if(b[l] != b[r]) {
for(int i=(b[r]-1)*blk+1; i<=r; i++) {
ret += a[i] + lazy[b[r]];
ret %= (val + 1);
}
}
for(int i=b[l]+1; i<=b[r]-1; i++) {
ll add = lazy[i] * blk % (val + 1);
ret += (sum[i] + add) % (val + 1);
ret %= (val + 1);
}
return ret;
}
int main() {
n = read;
for(int i=1; i<=n; i++) a[i] = read;
blk = sqrt(n);
for(int i=1; i<=n; i++) {
b[i] = (i - 1) / blk + 1;
sum[b[i]] += a[i];
}
for(int i=1; i<=n; i++) {
int op = read,l = read,r = read,c = read;
if(op == 0) update(l,r,c);
else printf("%lld\\n",query(l,r,c));
}
return 0;
}
/**
4
1 2 2 3
0 1 3 1
1 1 4 4
0 1 2 2
1 1 2 4
1
4
**/
入门 5-区间开方-区间查询
ll n,a[maxn];
ll blk,lazy[maxn],b[maxn],sum[maxn];
bool vis[maxnLoj 6282. 数列分块入门 6