傅里叶变换拉普拉斯变换Z 变换的联系是什么?为什么要进行这些变换?...
Posted CSDN资讯
tags:
篇首语:本文由小常识网(cha138.com)小编为大家整理,主要介绍了傅里叶变换拉普拉斯变换Z 变换的联系是什么?为什么要进行这些变换?...相关的知识,希望对你有一定的参考价值。
来源 | 嵌入式客栈
最近看到一个问题,傅里叶变换、拉普拉斯变换、Z 变换的联系是什么?为什么要进行这些变换?我觉得这是一个非常好的问题,貌似一下子也回答不上来,所以整理学习并分享一下。
什么是数学变换?
要理解这些变换,首先需要理解什么是数学变换!如果不理解什么是数学变换的概念,那么其他的概念我觉得也没有理解。
数学变换是指数学函数从原向量空间在自身函数空间变换,或映射到另一个函数空间,或对于集合X到其自身(比如线性变换)或从X到另一个集合Y的可逆变换函数。比如(图片来源wikipedia):
旋转变换(Rotation)
镜像变换(Reflection)
平移变换(Translation)
数学中还有很多其他的数学变换,其本质都可以看成是将函数f(x)利用变换因子进行的一种数学映射,其变换结果是函数的自变量有可能还是原来的几何向量空间,或许会变成其他的几何向量空间,比如傅立叶变换就从时域变换为频域。
而傅立叶变换和拉普拉斯变换的本质都是对连续函数的一种积分变换,那么什么是积分变换呢?
什么是积分变换?
积分变换通过对原函数对映射函数空间自变量在特定区间进行积分运算,将函数从其原始函数空间映射到另一个函数空间。这样一来,其中原始函数的某些属性在映射函数空间可能比原始函数空间更容易表征或分析。通常可以使用逆变换将变换后的函数映射回到原函数空间,这样的变换称为可逆变换。
假定对于函数为自变量t的函数f(t),通常积分变换都具有如下类似的范式:
函数f(t)是该变换的输入,(Tf)(u)为变换的输出,因此积分变换一般也称为一种特定的数学运算符。而函数K(t,u)称为积分核函数(kernel function)。
这里有一个对称核函数的概念,这是什么意思呢?就是将函数K的两个自变量交换位置仍然相等:
有的变换可逆,这是什么概念呢?就是变换后通过逆变换,还能还原!
设f(t)是一周期信号,假定其周期为T。若f(t)在一个周期的能量是有限的,就是:
则,可以将f(t)展开为傅立叶级数。怎么展开呢?计算如下:
而傅立叶级数的系数由下式计算:
对于f(t),利用欧拉公式还可以写成正弦函数与余弦函数的和,这里就不写了。欧拉公式如下:
公式中的k表示第k次谐波,这是个什么概念呢?不容易理解,看下对于一个方波的前4次谐波合成动图就比较好理解了。这里合成的概念是指时域上的叠加的概念。
图片来源wikipedia
从上图可以直观看出,周期性方波,可以看成多次谐波的线性叠加,其幅度谱图,是一根根离散的谱线,且幅度值越来越低,从这个角度可以看出高次谐波的分量,占比越来越小。其谱线的位置为:
谱线的位置为:
第一根为:
第二根为:
第n根为:
其谱线的间隔为
应用:这里可以联想到我们的电子系统中的时钟信号,做硬件的朋友或有经验,在做EMC的辐射测试时,发现产品电路板在某些频点超标,有经验的同学会很快定位到辐射源。其实这里大概率就是因为周期性的时钟信号造成的,从频率的角度可以看成是其基频的多次谐波的线性叠加,而某个谐波分量在电路线路尺寸满足辐射条件时,就从电路板上脱逸而出,变为电磁波能量向空间传播。所以反向去查该频率可能对应的周期性时钟信号的基频就能很快定位到辐射源,从而解决问题。
说到傅立叶级数是周期性信号可以用傅立叶级数展开,那么是不是任一周期性信号都可以进行傅立叶级数展开呢?答案是否定的,必须满足著名的狄利克雷(Dirichlet)条件:
在一周期内,如果有间断点存在,则间断点的数目需要是有限个数
在一周期内,极大值和极小值的数目是有限个数的
在一周期内,信号或者函数是绝对可积分的。见前文公式。
什么是傅立叶变换?
前面说了傅立叶级数,接下来再看傅立叶变换。傅立叶变换之所以称为傅立叶变换,是由于1822年,法国数学家傅立叶(J.Fourier) 在研究热传导理论时首次证明了将周期函数展开为傅立叶级数的理论,并进而不断发展成为一个有力的科研分析工具。
假定周期性信号周期T逐渐变大,则谱线间间隔将逐渐变小,如果外推周期T无限放大,变成无穷大,则信号或者函数就变成非周期信号或函数了,此时谱线就变成连续的了,而非一根一根离散的谱线!那么傅立叶变换正是这种一般性的数学定义:
对于连续时间信号f(t),若f(t)在时间维度上可积分,(实际上并不一定是时间t维度,这里可以是任意维度,只需在对应维度空间可积分即可),即:
那么,x(t)的傅立叶变换存在,且其计算式为:
其反变换为:
前文说傅立叶变换本质上也是一种连续函数的积分变换,那么从上面公式,可以看出傅立叶变换的核函数为:
前文说傅立叶变换本质上也是一种连续函数的积分变换,那么从上面公式,可以看出傅立叶变换的核函数为:
其核函数的两个自变量为t, ,对于 一般称为角速度(可以形象的理解为旋转运动的快慢),是表征频率空间的。
上面这两个公式是啥意思呢?在度量空间可积可以理解成其在度量空间能量有限,也即对其自变量积分(相当于求面积)是一个确定值,那么这样的函数或者信号就可以进行傅立叶变换展开,展开得到的