HDU3592差分约束
Posted hesorchen
tags:
篇首语:本文由小常识网(cha138.com)小编为大家整理,主要介绍了HDU3592差分约束相关的知识,希望对你有一定的参考价值。
题目
思路
按照题目建图即可。
需要注意的是,用最短路求解差分约束系统,是把某一个变量(即图中的源点)假设为一个值X,以此来推出其他变量可取的最大值。同理,用最长路求解差分约束系统,是把某一个变量(即图中的源点)假设为一个值X,以此来推出其他变量可取的最小值。
这题要求1到n的最大距离,只需以1为起点跑最短路求出 D i s n Dis_n Disn最大值或者以n为起点跑最长路求出 D i s 1 Dis_1 Dis1最小值。
代码
最短路
#include <bits/stdc++.h>
using namespace std;
const long long N = 1e6 + 5;
const long long INF = 1e18;
struct node
{
long long v, w, next;
} edge[3 * N];
long long head[N];
long long dis[N];
long long cnt[N];
long long vis[N];
long long ct = 1;
void add(long long u, long long v, long long w)
{
edge[ct].v = v;
edge[ct].w = w;
edge[ct].next = head[u];
head[u] = ct++;
}
long long n, x, y;
bool spfa(long long beg)
{
queue<long long> q;
q.push(beg);
vis[beg] = 1;
dis[beg] = 0;
while (q.size())
{
long long u = q.front();
q.pop();
vis[u] = 0;
for (long long i = head[u]; i; i = edge[i].next)
{
long long v = edge[i].v;
long long w = edge[i].w;
if (dis[u] + w < dis[v])
{
dis[v] = dis[u] + w;
if (!vis[v])
{
q.push(v);
if (++cnt[v] > n)
return false;
vis[v] = 1;
}
}
}
}
return true;
}
int main()
{ /*
用Di表示第i个人位于坐标Di上
对于条件x:a b c
有Db-Da<=c
对于条件y:a b c
有Db-Da>=c
要求的是Dn-D0的最大值 用最短路
*/
long long t;
scanf("%lld", &t);
while (t--)
{
scanf("%lld %lld %lld", &n, &x, &y);
ct = 1;
for (long long i = 0; i <= n; i++)
cnt[i] = head[i] = vis[i] = 0, dis[i] = INF;
for (long long i = 1; i <= x; i++)
{
long long a, b, c;
scanf("%lld %lld %lld", &a, &b, &c);
if (a > b)
swap(a, b);
add(a, b, c);
}
for (long long i = 1; i <= y; i++)
{
long long a, b, c;
scanf("%lld %lld %lld", &a, &b, &c);
if (a > b)
swap(a, b);
add(b, a, -c);
}
for (long long i = 2; i <= n; i++) //Di-D(i-1)>=0
add(i, i - 1, 0);
if (!spfa(1))
cout << -1 << endl;
else if (dis[n] == INF)
cout << -2 << endl;
else
cout << dis[n] - dis[1] << endl;
}
return 0;
}
最长路
#include <bits/stdc++.h>
using namespace std;
const long long N = 1e6 + 5;
const long long INF = 1e18;
struct node
{
long long v, w, next;
} edge[3 * N];
long long head[N];
long long dis[N];
long long cnt[N];
long long vis[N];
long long ct = 1;
void add(long long u, long long v, long long w)
{
edge[ct].v = v;
edge[ct].w = w;
edge[ct].next = head[u];
head[u] = ct++;
}
long long n, x, y;
bool spfa(long long beg)
{
queue<long long> q;
q.push(beg);
vis[beg] = 1;
dis[beg] = 0;
while (q.size())
{
long long u = q.front();
q.pop();
vis[u] = 0;
for (long long i = head[u]; i; i = edge[i].next)
{
long long v = edge[i].v;
long long w = edge[i].w;
if (dis[u] + w > dis[v])
{
dis[v] = dis[u] + w;
if (!vis[v])
{
q.push(v);
if (++cnt[v] > n)
return false;
vis[v] = 1;
}
}
}
}
return true;
}
int main()
{ /*
用Di表示第i个人位于坐标Di上
对于条件x:a b c
有Db-Da<=c
对于条件y:a b c
有Db-Da>=c
要求的是Dn-D0的最大值 用最短路
*/
long long t;
scanf("%lld", &t);
while (t--)
{
scanf("%lld %lld %lld", &n, &x, &y);
ct = 1;
for (long long i = 0; i <= n; i++)
cnt[i] = head[i] = vis[i] = 0, dis[i] = -INF;
for (long long i = 1; i <= x; i++)
{
long long a, b, c;
scanf("%lld %lld %lld", &a, &b, &c);
if (a > b)
swap(a, b);
add(b, a, -c);
}
for (long long i = 1; i <= y; i++)
{
long long a, b, c;
scanf("%lld %lld %lld", &a, &b, &c);
if (a > b)
swap(a, b);
add(a, b, c);
}
for (long long i = 2; i <= n; i++) //Di-D(i-1)>=0
add(i - 1, i, 0);
if (!spfa(n))
cout << -1 << endl;
else if (dis[1] == -INF)
cout << -2 << endl;
else
cout << dis[n] - dis[1] << endl;
}
return 0;
}
以上是关于HDU3592差分约束的主要内容,如果未能解决你的问题,请参考以下文章