实验二 K-近邻算法及应用
Posted 计算机181章杰龙
tags:
篇首语:本文由小常识网(cha138.com)小编为大家整理,主要介绍了实验二 K-近邻算法及应用相关的知识,希望对你有一定的参考价值。
实验课程 | 机器学习 |
---|---|
实验名称 | K-近邻算法及应用 |
实验要求 | 点击查看 |
学号 | 3180701137 |
【实验目的】
1.理解K-近邻算法原理,能实现算法K近邻算法;
2.掌握常见的距离度量方法;
3.掌握K近邻树实现算法;
4.针对特定应用场景及数据,能应用K近邻解决实际问题。
【实验内容】
1.实现曼哈顿距离、欧氏距离、闵式距离算法,并测试算法正确性。
2.实现K近邻树算法;
3.针对iris数据集,应用sklearn的K近邻算法进行类别预测。
4.针对iris数据集,编制程序使用K近邻树进行类别预测。
【实验报告要求】
1.对照实验内容,撰写实验过程、算法及测试结果;
2.代码规范化:命名规则、注释;
3.分析核心算法的复杂度;
4.查阅文献,讨论K近邻的优缺点;
5.举例说明K近邻的应用场景。
实验过程
k*邻法
k邻法是一种基本的分类与回归方法。k邻法的输入为实例的特征向量,对应于特征空间的点;输出为实例的类别,可以取多值。k邻法思想:1. 根据给定的距离度量方法,找出训练数据集中与实例x最相邻的k个点;2. 在k 个点中,根据分类决策规则,决定x 的类别。 k邻法中,当训练数据集、距离度量、k值、分类决策规则确定后,对于任何一个新的输入实例,它所属的类唯一的确定;这相当于将特征空间划分为一些子空间,确定子空间里每一个点所属的类。
KNN算法的一般流程————
1.收集数据:可以使用任何方法
2.准备数据:距离计算所需要的数值,最后是结构化的数 据格式。
3.分析数据:可以使用任何方法
4.训练算法: (此步骤kNN)中不适用
5.测试算法:计算错误率
6.使用算法:首先需要输入样本数据和结构化的输出结果, 然后运行k-*邻算法判定输入数据分别属于哪个分类, 最后应用对计算出的分类执行后续的处理。
import math
导入数学运算函数
from itertools import combinations
itertools模块是python的一个内置模块,它提供了非常有用的用于操作迭代对象的函数。
Python的itertools库中提供了combinations方法可以轻松的实现排列组合。
p = 1 曼哈顿距离
p = 2 欧氏距离
p = inf 闵式距离minkowski_distance
计算欧式距离
def L(x, y, p=2):
x1 = [1, 1], x2 = [5,1] 在这里,实例是两个二维特征 x1 = [1, 1], x2 = [5,1]
if len(x) == len(y) and len(x) > 1:
# 当两个特征的维数相等时,并且维度大于1时。
sum = 0
# 目前总的损失函数值为0
for i in range(len(x)): # 用range函数来遍历x所有的维度,x与y的维度相等。
sum += math.pow(abs(x[i] - y[i]), p)
# math.pow( x, y )函数是计算x的y次方。
return math.pow(sum, 1/p)# 距离公式。
else:
return 0
课本例3.1
数据准备
x1 = [1, 1]
x2 = [5, 1]
x3 = [4, 4]
x1, x2
输入数据
for i in range(1, 5):
r = { \'1-{}\'.format(c):L(x1, c, p=i) for c in [x2, x3]}
# 一条语句循环两次x2、x3,当x2时,当前i产生一个值,当x3时,当前i产生一个值。
print(min(zip(r.values(), r.keys())))
print(min(zip(r.values(), r.keys())))
结果:
python实现,遍历所有数据点,找出n个距离最*的点的分类情况,少数服从多数
import numpy as np
import pandas as pd
import matplotlib.pyplot as plt
%matplotlib inline
from sklearn.datasets import load_iris
载入Fisher的鸢尾花数据
from sklearn.model_selection import train_test_split
from collections import Counter
data
iris = load_iris()#中文名是安德森鸢尾花卉数据集
df = pd.DataFrame(iris.data, columns=iris.feature_names)#是一个表格
加入一列为分类标签
df[\'label\'] = iris.target# 表头字段就是key
df.columns = [\'sepal length\', \'sepal width\', \'petal length\', \'petal width\', \'label\']
选择其中的4个特征进行训练
data = np.array(df.iloc[:100, [0, 1, -1]])
df
输出表格
结果:
绘制数据散点图
plt.scatter(df[:50][\'sepal length\'], df[:50][\'sepal width\'], label=\'0\') # 绘制前50个数据的散点图
plt.scatter(df[50:100][\'sepal length\'], df[50:100][\'sepal width\'], label=\'1\') # 绘制50-100个数据的散点图
plt.xlabel(\'sepal length\')
plt.ylabel(\'sepal width\') # 设置x,y轴坐标名
plt.legend() # 绘图
结果:
data = np.array(df.iloc[:100, [0, 1, -1]]) # iloc函数:通过行号来取行数据,读取数据前100行的第0,1列和最后一列
X为data数据集中去除最后一列所形成的新数据集
y为data数据集中最后一列数据所形成的新数据集
X, y = data[:,:-1], data[:,-1]
选取训练集,和测试集
X_train, X_test, y_train, y_test = train_test_split(X, y, test_size=0.2)
建立一个类KNN,用于k-近邻的计算
class KNN:
#初始化
def init(self, X_train, y_train, n_neighbors=3, p=2): # 初始化数据,neighbor表示邻近点,p为欧氏距离
self.n = n_neighbors
self.p = p
self.X_train = X_train
self.y_train = y_train
def predict(self, X):
# X为测试集
knn_list = []
for i in range(self.n): # 遍历邻近点
dist = np.linalg.norm(X - self.X_train[i], ord=self.p) # 计算训练集和测试集之间的距离
knn_list.append((dist, self.y_train[i])) # 在列表末尾添加一个元素
for i in range(self.n, len(self.X_train)): # 3-20
max_index = knn_list.index(max(knn_list, key=lambda x: x[0])) # 找出列表中距离最大的点
dist = np.linalg.norm(X - self.X_train[i], ord=self.p) # 计算训练集和测试集之间的距离
if knn_list[max_index][0] > dist: # 若当前数据的距离大于之前得出的距离,就将数值替换
knn_list[max_index] = (dist, self.y_train[i])
# 统计
knn = [k[-1] for k in knn_list]
count_pairs = Counter(knn) # 统计标签的个数
max_count = sorted(count_pairs, key=lambda x:x)[-1] # 将标签升序排列
return max_count
# 计算测试算法的正确率
def score(self, X_test, y_test):
right_count = 0
n = 10
for X, y in zip(X_test, y_test):
label = self.predict(X)
if label == y:
right_count += 1
return right_count / len(X_test)
clf = KNN(X_train, y_train) # 调用KNN算法进行计算
clf.score(X_test, y_test) # 计算正确率
结果:
test_point = [6.0, 3.0] # 用于算法测试的数据
print(\'Test Point: {}\'.format(clf.predict(test_point))) # 结果
plt.scatter(df[:50][\'sepal length\'], df[:50][\'sepal width\'], label=\'0\') # 将数据的前50个数据绘制散点图
plt.scatter(df[50:100][\'sepal length\'], df[50:100][\'sepal width\'], label=\'1\') # 将数据的50-100个数据绘制散点图
plt.plot(test_point[0], test_point[1], \'bo\', label=\'test_point\') # 将测试数据点绘制在图中
plt.xlabel(\'sepal length\')
plt.ylabel(\'sepal width\') # x,y轴命名
plt.legend() # 绘图
结果:
使用scikitlearn中编好的包直接调用实现K-近邻算法
sklearn.neighbors.KNeighborsClassifier
n_neighbors: 临近点个数
p: 距离度量
algorithm: 近邻算法,可选{\'auto\', \'ball_tree\', \'kd_tree\', \'brute\'}
weights: 确定近邻的权重
导包
from sklearn.neighbors import KNeighborsClassifier
调用
clf_sk = KNeighborsClassifier()
clf_sk.fit(X_train, y_train)
结果:
kd树
建造kd树
kd-tree 每个结点中主要包含的数据如下:
class KdNode(object):
def init(self, dom_elt, split, left, right):
self.dom_elt = dom_elt#结点的父结点
self.split = split#划分结点
self.left = left#做结点
self.right = right#右结点
class KdTree(object):
def init(self, data):
k = len(data[0])#数据维度
#print("创建结点")
#print("开始执行创建结点函数!!!")
def CreateNode(split, data_set):
#print(split,data_set)
if not data_set:#数据集为空
return None
#print("进入函数!!!")
data_set.sort(key=lambda x:x[split])#开始找切分平面的维度
#print("data_set:",data_set)
split_pos = len(data_set)//2 #取得中位数点的坐标位置(求整)
median = data_set[split_pos]
split_next = (split+1) % k #(取余数)取得下一个节点的分离维数
return KdNode(
median,
split,
CreateNode(split_next, data_set[:split_pos]),#创建左结点
CreateNode(split_next, data_set[split_pos+1:]))#创建右结点
#print("结束创建结点函数!!!")
self.root = CreateNode(0, data)#创建根结点
KDTree的前序遍历
def preorder(root):
print(root.dom_elt)
if root.left:
preorder(root.left)
if root.right:
preorder(root.right)
遍历kd树
KDTree的前序遍历
def preorder(root):
print(root.dom_elt)
if root.left:
preorder(root.left)
if root.right:
preorder(root.right)
from math import sqrt
from collections import namedtuple
定义一个namedtuple,分别存放最近坐标点、最近距离和访问过的节点数
result = namedtuple("Result_tuple",
"nearest_point nearest_dist nodes_visited")
搜索开始
def find_nearest(tree, point):
k = len(point)#数据维度
def travel(kd_node, target, max_dist):
if kd_node is None:
return result([0]*k, float("inf"), 0)#表示数据的无
nodes_visited = 1
s = kd_node.split #数据维度分隔
pivot = kd_node.dom_elt #切分根节点
if target[s] <= pivot[s]:
nearer_node = kd_node.left #下一个左结点为树根结点
further_node = kd_node.right #记录右节点
else: #右面更近
nearer_node = kd_node.right
further_node = kd_node.left
temp1 = travel(nearer_node, target, max_dist)
nearest = temp1.nearest_point# 得到叶子结点,此时为nearest
dist = temp1.nearest_dist #update distance
nodes_visited += temp1.nodes_visited
print("nodes_visited:", nodes_visited)
if dist < max_dist:
max_dist = dist
temp_dist = abs(pivot[s]-target[s])#计算球体与分隔超平面的距离
if max_dist < temp_dist:
return result(nearest, dist, nodes_visited)
# -------
#计算分隔点的欧式距离
temp_dist = sqrt(sum((p1-p2)**2 for p1, p2 in zip(pivot, target)))#计算目标点到邻近节点的Distance
if temp_dist < dist:
nearest = pivot #更新最近点
dist = temp_dist #更新最近距离
max_dist = dist #更新超球体的半径
print("输出数据:" , nearest, dist, max_dist)
# 检查另一个子结点对应的区域是否有更近的点
temp2 = travel(further_node, target, max_dist)
nodes_visited += temp2.nodes_visited
if temp2.nearest_dist < dist: # 如果另一个子结点内存在更近距离
nearest = temp2.nearest_point # 更新最近点
dist = temp2.nearest_dist # 更新最近距离
return result(nearest, dist, nodes_visited)
return travel(tree.root, point, float("inf")) # 从根节点开始递归
数据测试
data= [[2,3],[5,4],[9,6],[4,7],[8,1],[7,2]]
kd=KdTree(data)
preorder(kd.root)
结果:
导包
from time import clock
from random import random
产生一个k维随机向量,每维分量值在0~1之间
def random_point(k):
return [random() for _ in range(k)]
产生n个k维随机向量
def random_points(k, n):
return [random_point(k) for _ in range(n)]
输入数据进行测试
ret = find_nearest(kd, [3,4.5])
print (ret)
结果:
N = 400000
t0 = clock()
kd2 = KdTree(random_points(3, N)) # 构建包含四十万个3维空间样本点的kd树
ret2 = find_nearest(kd2, [0.1,0.5,0.8]) # 四十万个样本点中寻找离目标最近的点
t1 = clock()
print ("time: ",t1-t0, "s")
print (ret2)
结果:
四、个人小结
knn算法的核心思想是未标记样本的类别,由距离其最近的k个邻居投票来决定。
具体的,假设我们有一个已标记好的数据集。此时有一个未标记的数据样本,我们的任务是预测出这个数据样本所属的类别。knn的原理是,计算待标记样本和数据集中每个样本的距离,取距离最近的k个样本。待标记的样本所属类别就由这k个距离最近的样本投票产生
以上是关于实验二 K-近邻算法及应用的主要内容,如果未能解决你的问题,请参考以下文章