实验二 K-近邻算法及应用

Posted WM!

tags:

篇首语:本文由小常识网(cha138.com)小编为大家整理,主要介绍了实验二 K-近邻算法及应用相关的知识,希望对你有一定的参考价值。

作业信息

作业属于哪个课程 https://edu.cnblogs.com/campus/ahgc/machinelearning
作业要求 https://edu.cnblogs.com/campus/ahgc/machinelearning/homework/12004
作业的目标 掌握K近邻树实现算法,能应用K近邻解决实际问题
学号 3180701306

一.【实验目的】
理解K-近邻算法原理,能实现算法K近邻算法;
掌握常见的距离度量方法;
掌握K近邻树实现算法;
针对特定应用场景及数据,能应用K近邻解决实际问题。

二.【实验内容】
实现曼哈顿距离、欧氏距离、闵式距离算法,并测试算法正确性。
实现K近邻树算法;
针对iris数据集,应用sklearn的K近邻算法进行类别预测。
针对iris数据集,编制程序使用K近邻树进行类别预测。

三.【实验报告要求】
对照实验内容,撰写实验过程、算法及测试结果;
代码规范化:命名规则、注释;
分析核心算法的复杂度;
查阅文献,讨论K近邻的优缺点;
举例说明K近邻的应用场景。

四.【实验结果及截图】


import math
from itertools import combinations
def L(x, y, p=2):
    # x1 = [1, 1], x2 = [5,1]
    # 此处是定义闵氏距离的公式,x和y分别指数据的行和列,只有维数一致才进行计算,p表示当前进行的是什么运算
    if len(x) == len(y) and len(x) > 1:
        sum = 0
        for i in range(len(x)):
            sum += math.pow(abs(x[i] - y[i]), p)
        return math.pow(sum, 1/p)
    else:
        return 0
# 课本例3.1
x1 = [1, 1]
x2 = [5, 1]
x3 = [4, 4]

# 分别在p=1-4的情况下,对x1与x2,x3的距离的计算,并输出最小值
for i in range(1, 5):
    r = { \'1-{}\'.format(c):L(x1, c, p=i) for c in [x2, x3]}
    print(min(zip(r.values(), r.keys())))
    # r此时为字典,values是距离的值,keys表示距离的端点

# 读入iris数据集
# data
iris = load_iris()
df = pd.DataFrame(iris.data, columns=iris.feature_names)
df[\'label\'] = iris.target # 加入一列为分类标签
df.columns = [\'sepal length\', \'sepal width\', \'petal length\', \'petal width\', \'label\']
# data = np.array(df.iloc[:100, [0, 1, -1]])
df

# 做iris散点图,并根据长度进行分类,用0和1标记
plt.scatter(df[:50][\'sepal length\'], df[:50][\'sepal width\'], label=\'0\')
plt.scatter(df[50:100][\'sepal length\'], df[50:100][\'sepal width\'], label=\'1\')
plt.xlabel(\'sepal length\')
plt.ylabel(\'sepal width\')
plt.legend()

data = np.array(df.iloc[:100, [0, 1, -1]])#取出sepal长度、宽度和标签对应列的数据
X, y = data[:,:-1], data[:,-1]#X为sepal length,sepal width y为标签
X_train, X_test, y_train, y_test = train_test_split(X, y, test_size=0.2)# 将矩阵随机划分为训练集和测试集

#定义KNN这个类
class KNN:
    def __init__(self, X_train, y_train, n_neighbors=3, p=2):
 	"""
 	parameter: n_neighbors 临近点个数
 	parameter: p 距离度量
	"""
	self.n = n_neighbors
 	self.p = p
 	self.X_train = X_train
	self.y_train = y_train
    # 计算出预测含有同一属性的点
    def predict(self, X):
 	# 取出n个点,放入空的列表,列表中存放预测点与训练集点的距离及其对应标签
 	knn_list = []
 	for i in range(self.n):
  	 	#np.linalg.norm 求范数
 		dist = np.linalg.norm(X - self.X_train[i], ord=self.p)
 		knn_list.append((dist, self.y_train[i]))
 	#依次取出训练集中的点,选出其中n_neighbor个距离最大的点
        #距离最小的点存在knn_list中
	for i in range(self.n, len(self.X_train)):
            \'\'\'
            此处 max(num,key=lambda x: x[0])用法:
            x:x[]字母可以随意修改,求最大值方式按照中括号[]里面的维度,
            [0]按照第一维,
            [1]按照第二维
            \'\'\'
    	        max_index = knn_list.index(max(knn_list, key=lambda x: x[0]))
 		dist = np.linalg.norm(X - self.X_train[i], ord=self.p) 
    	if knn_list[max_index][0] > dist:
 			knn_list[max_index] = (dist, self.y_train[i])
 
 	# 统计分类最多的点,确定预测数据的分类
        knn = [k[-1] for k in knn_list]
        #counter为计数器,按照标签计数
        count_pairs = Counter(knn)
        #排序
        max_count = sorted(count_pairs, key=lambda x:x)[-1]
        return max_count
    #预测的正确率
    def score(self, X_test, y_test):
        right_count = 0
        n = 10
        for X, y in zip(X_test, y_test):
            label = self.predict(X)
            if label == y:
                right_count += 1
        return right_count / len(X_test)


clf = KNN(X_train, y_train)
clf.score(X_test, y_test)

0.05

test_point = [6.0, 3.0]#预测点
print(\'Test Point: {}\'.format(clf.predict(test_point)))

Test Point:1.0

#预测点
plt.scatter(df[:50][\'sepal length\'], df[:50][\'sepal width\'], label=\'0\')
plt.scatter(df[50:100][\'sepal length\'], df[50:100][\'sepal width\'], label=\'1\')
#打印预测点
plt.plot(test_point[0], test_point[1], \'bo\', label=\'test_point\')
plt.xlabel(\'sepal length\')
plt.ylabel(\'sepal width\')
plt.legend()

from sklearn.neighbors import KNeighborsClassifier
clf_sk = KNeighborsClassifier()
clf_sk.fit(X_train, y_train)
clf_sk.score(X_test, y_test)

1.0

# kd-tree每个结点中主要包含的数据结构如下 class KdNode(object):
 def __init__(self, dom_elt, split, left, right):
 self.dom_elt = dom_elt # k维向量节点(k维空间中的一个样本点)
 self.split = split # 整数(进行分割维度的序号)
 self.left = left # 该结点分割超平面左子空间构成的kd-tree
 self.right = right # 该结点分割超平面右子空间构成的kd-tree
class KdTree(object):
 def __init__(self, data):
 k = len(data[0]) # 数据维度
 
 def CreateNode(split, data_set): # 按第split维划分数据集exset创建KdNode
 if not data_set: # 数据集为空
 return None
 # key参数的值为一个函数,此函数只有一个参数且返回一个值用来进行比较
 # operator模块提供的itemgetter函数用于获取对象的哪些维的数据,参数为需要获取的数据在对象
 #data_set.sort(key=itemgetter(split)) # 按要进行分割的那一维数据排序
 data_set.sort(key=lambda x: x[split])
 split_pos = len(data_set) // 2 # //为Python中的整数除法
 median = data_set[split_pos] # 中位数分割点 
 split_next = (split + 1) % k # cycle coordinates
 
 # 递归的创建kd树
 return KdNode(median, split, 
 CreateNode(split_next, data_set[:split_pos]), # 创建左子树
 CreateNode(split_next, data_set[split_pos + 1:])) # 创建右子树
 
 self.root = CreateNode(0, data) # 从第0维分量开始构建kd树,返回根节点
# KDTree的前序遍历 def preorder(root): 
 print (root.dom_elt) 
 if root.left: # 节点不为空
 preorder(root.left) 
 if root.right: 
 preorder(root.right)

#对构建好的kd树进行搜索,寻找与目标点最近的样本点:
from math import sqrt
from collections import namedtuple

#定义一个namedtuple,分别存放最近坐标点、最近距离和访问过的节点数
result = namedtuple("Result_tuple", "nearest_point nearest_dist nodes_visited")
 
def find_nearest(tree, point):
	k = len(point) # 数据维度
	def travel(kd_node, target, max_dist):
		if kd_node is None: 
			return result([0] * k, float("inf"), 0) # python中用float("inf")和float("-inf")表示正负
		nodes_visited = 1
 
		s = kd_node.split # 进行分割的维度
		pivot = kd_node.dom_elt # 进行分割的“轴”
 
		if target[s] <= pivot[s]: # 如果目标点第s维小于分割轴的对应值(目标离左子树更近)
			nearer_node = kd_node.left # 下一个访问节点为左子树根节点
			further_node = kd_node.right # 同时记录下右子树
		else: # 目标离右子树更近
			nearer_node = kd_node.right # 下一个访问节点为右子树根节点
			further_node = kd_node.left
		
		temp1 = travel(nearer_node, target, max_dist) # 进行遍历找到包含目标点的区域
 
		nearest = temp1.nearest_point # 以此叶结点作为“当前最近点”
		dist = temp1.nearest_dist # 更新最近距离
 
		nodes_visited += temp1.nodes_visited 

		if dist < max_dist: 
			max_dist = dist # 最近点将在以目标点为球心,max_dist为半径的超球体内
 
		temp_dist = abs(pivot[s] - target[s]) # 第s维上目标点与分割超平面的距离
		if max_dist < temp_dist: # 判断超球体是否与超平面相交
		return result(nearest, dist, nodes_visited) # 不相交则可以直接返回,不用继续判断
 
		#---------------------------------------------------------------------- 
		# 计算目标点与分割点的欧氏距离 
		temp_dist = sqrt(sum((p1 - p2) ** 2 for p1, p2 in zip(pivot, target))) 
 
		if temp_dist < dist: # 如果“更近”
			nearest = pivot # 更新最近点
			dist = temp_dist # 更新最近距离
			max_dist = dist # 更新超球体半径
 
		# 检查另一个子结点对应的区域是否有更近的点
		temp2 = travel(further_node, target, max_dist) 
 
		nodes_visited += temp2.nodes_visited
		if temp2.nearest_dist < dist: # 如果另一个子结点内存在更近距离
			nearest = temp2.nearest_point # 更新最近点
			dist = temp2.nearest_dist # 更新最近距离

		return result(nearest, dist, nodes_visited)
	
	return travel(tree.root, point, float("inf")) # 从根节点开始递归

data = [[2,3],[5,4],[9,6],[4,7],[8,1],[7,2]]
kd = KdTree(data)
preorder(kd.root)

[7,2]
[5,4]
[2,3]
[4,7]
[9,6]
[8,1]

from time import clock
from random import random

# 产生一个k维随机向量,每维分量值在0~1之间 
def random_point(k):
	return [random() for _ in range(k)]
# 产生n个k维随机向量 
def random_points(k, n):
	return [random_point(k) for _ in range(n)]

ret = find_nearest(kd, [3,4.5])
print (ret)

Result_tuple(nearest_point=[2, 3], nearest_dist=1.8027756377319946, nodes_visited=4)

N = 400000
t0 = clock()
kd2 = KdTree(random_points(3, N)) # 构建包含四十万个3维空间样本点的kd树
ret2 = find_nearest(kd2, [0.1,0.5,0.8]) # 四十万个样本点中寻找离目标最近的点
t1 = clock()
print ("time: ",t1-t0, "s")
print (ret2)

time: 7.299844505209247 s
Result_tuple(nearest_point=[0.10505669630674175, 0.49542598718931097, 0.8033166919543026], nearest_dist=0.007582362181450973, nodes_visited=53)

五.【实验小结】
存在一个样本数据集合(训练样本集),并且样本集中每个数据都存在标签,即我们知道样本集中每一数据与所属分类的对应关系。输入没有标签的新数据后,将新数据每个特征与样本集中数据对应的特征进行比较,然后算法提取样本集中特征最相似的数据(最近邻)的分类标签。
一般来说我们只选择样本数据集中前k个最相似的数据。通常k是不大于20的整数。最后选择k个最相似数据中出现次数最多的分类,作为新数据的分类。

以上是关于实验二 K-近邻算法及应用的主要内容,如果未能解决你的问题,请参考以下文章

实验二K-近邻算法及应用

实验二 K-近邻算法及应用

实验二 K-近邻算法及应用

实验二 K-近邻算法及应用

实验二 K-近邻算法及应用

实验二 K-近邻算法及应用