基于Pytorch肺部感染识别案例(采用ResNet网络结构)
Posted 一曲无痕奈何
tags:
篇首语:本文由小常识网(cha138.com)小编为大家整理,主要介绍了基于Pytorch肺部感染识别案例(采用ResNet网络结构)相关的知识,希望对你有一定的参考价值。
一、整体流程
1. 数据集下载地址:https://www.kaggle.com/paultimothymooney/chest-xray-pneumonia/download
2. 数据集展示
案例主要流程:
第一步:加载预训练模型ResNet,该模型已在ImageNet上训练过。
第二步:冻结预训练模型中低层卷积层的参数(权重)。
第三步:用可训练参数的多层替换分类层。
第四步:在训练集上训练分类层。
第五步:微调超参数,根据需要解冻更多层。
ResNet 网络结构图
二、显示图片功能
#1加载库
import torch
import torch.nn as nn
import numpy as np
import matplotlib.pyplot as plt
from torchvision import datasets, transforms
import os
from torchvision.utils import make_grid
from torch.utils.data import DataLoader
#2、定义一个方法:显示图片
def img_show(inp, title=None):
plt.figure(figsize=(14,3))
inp = inp.numpy().transpose((1,2,0)) #转成numpy,然后转置
mean = np.array([0.485, 0.456, 0.406])
std = np.array([0.229, 0.224,0.225])
inp = std * inp + mean
inp = np.clip(inp, 0, 1)
plt.imshow(inp)
if title is not None:
plt.title(title)
plt.pause(0.001)
plt.show()
def main():
pass
#3、定义超参数
BATCH_SIZE = 8
DEVICE = torch.device("gpu" if torch.cuda.is_available() else "cpu")
#4、图片转换 使用字典进行转换
data_transforms =
'train': transforms.Compose([
transforms.Resize(300),
transforms.RandomResizedCrop(300) ,#随机裁剪
transforms.RandomHorizontalFlip(),
transforms.CenterCrop(256),
transforms.ToTensor(), #转为张量
transforms.Normalize([0.485, 0.456, 0.406],
[0.229, 0.224, 0.225]) #正则化
]),
'val': transforms.Compose([
transforms.Resize(300),
transforms.CenterCrop(256),
transforms.ToTensor(), #转为张量
transforms.Normalize([0.485, 0.456, 0.406],
[0.229, 0.224, 0.225]) #正则化
])
#5、操作数据集
# 5.1、数据集路径
data_path = "D:/chest_xray/"
#5.2、加载数据集的train val
img_datasets = x : datasets.ImageFolder(os.path.join(data_path,x),
data_transforms[x]) for x in ["train","val"]
#5.3、为数据集创建一个迭代器,读取数据
dataloaders = x : DataLoader(img_datasets[x], shuffle=True,
batch_size= BATCH_SIZE) for x in ["train","val"]
# 5.4、训练集和验证集的大小(图片的数量)
data_sizes = x : len(img_datasets[x]) for x in ["train","val"]
# 5.5、获取标签类别名称 NORMAL 正常 -- PNEUMONIA 感染
target_names = img_datasets['train'].classes
#6 显示一个batch_size 的图片(8张图片)
#6.1 读取8张图片
datas ,targets = next(iter(dataloaders['train'])) #iter把对象变为可迭代对象,next去迭代
#6.2、将若干正图片平成一副图像
out = make_grid(datas, norm = 4, padding = 10)
#6.3显示图片
img_show(out, title=[target_names[x] for x in targets]) #title拿到类别,也就是标签呢
if __name__ == '__main__':
main()
上面代码实现的功能就是展示图片样例 (未完待续)
显示数据集中的图片样例:
三、迁移学习,进行模型的微调
迁移学习(Transfer learning) 就是把已经训练好的模型参数迁移到新的模型来帮助新模型训练。
后面这个代码使用Jupter NoteBook
案例:肺部检测
# 1 加入必要的库
import torch
import torch.nn as nn
import numpy as np
import torch.optim as optim
from torch.optim import lr_scheduler
from torchvision import datasets, transforms, utils, models
import time
import matplotlib.pyplot as plt
from torch.utils.data import DataLoader
from torch.utils.tensorboard.writer import SummaryWriter
import os
import torchvision
import copy
# 2 加载数据集
# 2.1 图像变化设置
data_transforms =
"train":
transforms.Compose([
transforms.RandomResizedCrop(300),
transforms.RandomHorizontalFlip(),
transforms.CenterCrop(256),
transforms.ToTensor(),
transforms.Normalize([0.485, 0.456, 0.406],
[0.229, 0.224, 0.225])
]),
"val":
transforms.Compose([
transforms.Resize(300),
transforms.CenterCrop(256),
transforms.ToTensor(),
transforms.Normalize([0.485, 0.456, 0.406],
[0.229, 0.224, 0.225])
]),
'test':
transforms.Compose([
transforms.Resize(size=300),
transforms.CenterCrop(size=256),
transforms.ToTensor(),
transforms.Normalize([0.485, 0.456, 0.406], [0.229, 0.224,
0.225])
]),
# 3 可视化图片
def imshow(inp, title=None):
inp = inp.numpy().transpose((1,2,0))
mean = np.array([0.485, 0.456, 0.406])
std = np.array([0.229, 0.224, 0.225])
inp = std * inp + mean
inp = np.clip(inp, 0, 1)
plt.imshow(inp)
if title is not None:
plt.title(title)
plt.pause(0.001)
# 6 可视化模型预测
def visualize_model(model, num_images=6):
"""显示预测的图片结果
Args:
model: 训练后的模型
num_images: 需要显示的图片数量
Returns:
无
"""
was_training = model.training
model.eval()
images_so_far = 0
fig = plt.figure()
with torch.no_grad():
for i, (datas, targets) in enumerate(dataloaders['val']):
datas, targets = datas.to(device), targets.to(device)
outputs = model(datas) # 预测数据
_, preds = torch.max(outputs, 1) # 获取每行数据的最大值
for j in range(datas.size()[0]):
images_so_far += 1 # 累计图片数量
ax = plt.subplot(num_images // 2, 2, images_so_far) # 显示图片
ax.axis('off') # 关闭坐标轴
ax.set_title('predicted:'.format(class_names[preds[j]]))
imshow(datas.cpu().data[j])
if images_so_far == num_images:
model.train(mode=was_training)
return
model.train(mode=was_training)
# 7 定义训练函数
def train(model, device, train_loader, criterion, optimizer, epoch, writer):
# 作用:声明在模型训练时,采用Batch Normalization 和 Dropout
# Batch Normalization : 对网络中间的每层进行归一化处理,保证每层所提取的特征分布不会被破坏
# Dropout : 减少过拟合
model.train()
total_loss = 0.0 # 总损失初始化为0.0
# 循环读取训练数据,更新模型参数
for batch_id, (data, target) in enumerate(train_loader):
data, target = data.to(device), target.to(device)
optimizer.zero_grad() # 梯度初始化为零
output = model(data) # 训练后的输出
loss = criterion(output, target) # 计算损失
loss.backward() # 反向传播
optimizer.step() # 参数更新
total_loss += loss.item() # 累计损失
# 写入日志
writer.add_scalar('Train Loss', total_loss / len(train_loader), epoch)
writer.flush() # 刷新
return total_loss / len(train_loader) # 返回平均损失值
# 8 定义测试函数
def test(model, device, test_loader, criterion, epoch, writer):
# 作用:声明在模型训练时,不采用Batch Normalization 和 Dropout
model.eval()
# 损失和正确
total_loss = 0.0
correct = 0.0
# 循环读取数据
with torch.no_grad():
for data, target in test_loader:
data, target = data.to(device), target.to(device)
# 预测输出
output = model(data)
# 计算损失
total_loss += criterion(output, target).item()
# 获取预测结果中每行数据概率最大的下标
_,preds = torch.max(output, dim=1)
# pred = output.data.max(1)[1]
# 累计预测正确的个数
correct += torch.sum(preds == target.data)
# correct += pred.eq(target.data).cpu().sum()
######## 增加 #######
misclassified_images(preds, writer, target, data, output, epoch) # 记录错误分类的图片
# 总损失
total_loss /= len(test_loader)
# 正确率
accuracy = correct / len(test_loader)
# 写入日志
writer.add_scalar('Test Loss', total_loss, epoch)
writer.add_scalar('Accuracy', accuracy, epoch)
writer.flush()
# 输出信息
print("Test Loss : :.4f, Accuracy : :.4f".format(total_loss, accuracy))
return total_loss, accuracy
# 定义函数,获取Tensorboard的writer
def tb_writer():
timestr = time.strftime("%Y%m%d_%H%M%S")
writer = SummaryWriter('logdir/' + timestr)
return writer
# 8 模型微调
# 定义一个池化层处理函数
class AdaptiveConcatPool2d(nn.Module):
def __init__(self, size=None):
super().__init__()
size = size or (1,1) # 池化层的卷积核大小,默认值为(1,1)
self.pool_one = nn.AdaptiveAvgPool2d(size) # 池化层1
self.pool_two = nn.AdaptiveMaxPool2d(size) # 池化层2
def forward(self, x):
return torch.cat([self.pool_one(x), self.pool_two(x)], 1) # 连接两个池化层
def get_model():
model_pre = models.resnet50(pretrained=True) # 获取预训练模型
# 冻结预训练模型中所有参数
for param in model_pre.parameters():
param.requires_grad = False
# 替换ResNet最后的两层网络,返回一个新的模型(迁移学习)
model_pre.avgpool = AdaptiveConcatPool2d() # 池化层替换
model_pre.fc = nn.Sequential(
nn.Flatten(), # 所有维度拉平
nn.BatchNorm1d(4096), # 正则化处理
nn.Dropout(0.5), # 丢掉神经元
nn.Linear(4096, 512), # 线性层处理
nn.ReLU(), # 激活函数
nn.BatchNorm1d(512), # 正则化处理
nn.Dropout(p=0.5), # 丢掉神经元
nn.Linear(512, 2), # 线性层
nn.LogSoftmax(dim=1) # 损失函数
)
return model_pre
def train_epochs(model, device, dataloaders, criterion, optimizer, num_epochs, writer):
"""
Returns:
返回一个训练过后最好的模型
"""
print("0:>20 | 1:>20 | 2:>20 | 3:>20 |".format('Epoch', 'Training Loss', 'Test Loss', 'Accuracy'))
best_score = np.inf # 假设最好的预测值
start = time.time() # 开始时间
# 开始循环读取数据进行训练和验证
for epoch in num_epochs:
train_loss = train(model, device, dataloaders['train'], criterion, optimizer, epoch, writer)
test_loss, accuracy = test(model, device, dataloaders['val'], criterion, epoch, writer)
if test_loss < best_score:
best_score = test_loss
torch.save(model.state_dict(), model_path) # 保存模型 # state_dict变量存放训练过程中需要学习的权重和偏置系数
print("0:>20 | 1:>20 | 2:>20 | 3:>20.2f |".format(epoch, train_loss, test_loss, accuracy))
writer.flush()
# 训练完所耗费的总时间
time_all = time.time() - start
# 输出时间信息
print("Training complete in :.2fm :.2fs".format(time_all // 60, time_all % 60))
def train_epochs(model, device, dataloaders, criterion, optimizer, num_epochs, writer):
"""
Returns:
返回一个训练过后最好的模型
"""
print("0:>20 | 1:>20 | 2:>20 | 3:>20 |".format('Epoch', 'Training Loss', 'Test Loss', 'Accuracy'))
best_score = np.inf # 假设最好的预测值
start = time.time() # 开始时间
# 开始循环读取数据进行训练和验证
for epoch in num_epochs:
train_loss = train(model, device, dataloaders['train'], criterion, optimizer, epoch, writer)
test_loss, accuracy = test(model, device, dataloaders['val'], criterion, epoch, writer)
if test_loss < best_score:
best_score = test_loss
torch.save(model.state_dict(), model_path) # 保存模型 # state_dict变量存放训练过程中需要学习的权重和偏置系数
print("0:>20 | 1:>20 | 2:>20 | 3:>20.2f |".format(epoch, train_loss, test_loss, accuracy))
writer.flush()
# 训练完所耗费的总时间
time_all = time.time() - start
# 输出时间信息
print("Training complete in :.2fm :.2fs".format(time_all // 60, time_all % 60))
def misclassified_images(pred, writer, target, data, output, epoch, count=10):
misclassified = (pred != target.data) # 记录预测值与真实值不同的True和False
for index, image_tensor in enumerate(data[misclassified][:count]):
# 显示预测不同的前10张图片
img_name = '->Predict-x-Actual'.format(
epoch,
LABEL[pred[misclassified].tolist()[index]],
LABEL[target.data[misclassified].tolist()[index]],
)
writer.add_image(img_name, inv_normalize(image_tensor), epoch)
# 9 训练和验证
# 定义超参数
model_path = 'model.pth'
batch_size = 16
device = torch.device('gpu' if torch.cuda.is_available() else 'cpu') # gpu和cpu选择
# 2.2 加载数据
data_path = "D:/chest_xray/" # 数据集所在的文件夹路径
# 2.2.1 加载数据集
image_datasets = x : datasets.ImageFolder(os.path.join(data_path, x), data_transforms[x]) for x in ['train', 'val', 'test']
# 2.2.2 为数据集创建iterator
dataloaders = x : DataLoader(image_datasets[x], batch_size=batch_size, shuffle=True) for x in ['train', 'val', 'test']
# 2.2.3 训练集和验证集的大小
data_sizes = x : len(image_datasets[x]) for x in ['train', 'val', 'test']
# 2.2.4 训练集所对应的标签
class_names = image_datasets['train'].classes # 一共有2个:NORMAL正常 vs PNEUMONIA肺炎
LABEL = dict((v, k ) for k, v in image_datasets['train'].class_to_idx.items())
print("-" * 50)
# 4 获取trian中的一批数据
datas, targets = next(iter(dataloaders['train']))
# 5 显示这批数据
out = torchvision.utils.make_grid(datas)
imshow(out, title=[class_names[x] for x in targets])
# 将tensor转换为image
inv_normalize = transforms.Normalize(
mean=[-0.485/0.229, -0.456/0.224, -0.406/0.225],
std=[1/0.229, 1/0.224, 1/0.255]
)
writer = tb_writer()
images, labels = next(iter(dataloaders['train'])) # 获取一批数据
grid = torchvision.utils.make_grid([inv_normalize(image) for image in images[:32]]) # 读取32张图片
writer.add_image('X-Ray grid', grid, 0) # 添加到TensorBoard
writer.flush() # 将数据读取到存储器中
model = get_model().to(device) # 获取模型
criterion = nn.NLLLoss() # 损失函数
optimizer = optim.Adam(model.parameters())
train_epochs(model, device, dataloaders, criterion, optimizer, range(0,10), writer)
writer.close()
# 9 训练和验证
# 定义超参数
model_path = 'model.pth'
batch_size = 16
device = torch.device('gpu' if torch.cuda.is_available() else 'cpu') # gpu和cpu选择
# 2.2 加载数据
data_path = "D:/chest_xray/" # 数据集所在的文件夹路径
# 2.2.1 加载数据集
image_datasets = x : datasets.ImageFolder(os.path.join(data_path, x), data_transforms[x]) for x in ['train', 'val', 'test']
# 2.2.2 为数据集创建iterator
dataloaders = x : DataLoader(image_datasets[x], batch_size=batch_size, shuffle=True) for x in ['train', 'val', 'test']
# 2.2.3 训练集和验证集的大小
data_sizes = x : len(image_datasets[x]) for x in ['train', 'val', 'test']
# 2.2.4 训练集所对应的标签
class_names = image_datasets['train'].classes # 一共有2个:NORMAL正常 vs PNEUMONIA肺炎
LABEL = dict((v, k ) for k, v in image_datasets['train'].class_to_idx.items())
print("-" * 50)
# 4 获取trian中的一批数据
datas, targets = next(iter(dataloaders['train']))
# 5 显示这批数据
out = torchvision.utils.make_grid(datas)
imshow(out, title=[class_names[x] for x in targets])
# 将tensor转换为image
inv_normalize = transforms.Normalize(
mean=[-0.485/0.229, -0.456/0.224, -0.406/0.225],
std=[1/0.229, 1/0.224, 1/0.255]
)
writer = tb_writer()
images, labels = next(iter(dataloaders['train'])) # 获取一批数据
grid = torchvision.utils.make_grid([inv_normalize(image) for image in images[:32]]) # 读取32张图片
writer.add_image('X-Ray grid', grid, 0) # 添加到TensorBoard
writer.flush() # 将数据读取到存储器中
model = get_model().to(device) # 获取模型
criterion = nn.NLLLoss() # 损失函数
optimizer = optim.Adam(model.parameters())
train_epochs(model, device, dat
以上是关于基于Pytorch肺部感染识别案例(采用ResNet网络结构)的主要内容,如果未能解决你的问题,请参考以下文章
全网最详细最好懂 PyTorch CNN案例分析 识别手写数字