财富:亚马逊采用 MXNet ,巨头间深度学习框架之争白热化
Posted 新智元
tags:
篇首语:本文由小常识网(cha138.com)小编为大家整理,主要介绍了财富:亚马逊采用 MXNet ,巨头间深度学习框架之争白热化相关的知识,希望对你有一定的参考价值。
1 新智元编译
来源:fortune.com、mxnet.io、elitedatascience.com
编译:刘小芹
:COO、执行总编、主编、高级编译、主笔、运营总监、客户经理、咨询总监、行政助理等 9 大岗位全面开放。
简历投递:jobs@aiera.com.cn
HR 微信:13552313024
新智元为COO和执行总编提供最高超百万的年薪激励;为骨干员工提供最完整的培训体系、高于业界平均水平的工资和奖金。
加盟新智元,与人工智能业界领袖携手改变世界。
【新智元导读】此前一直被调侃火不起来的MXnet,得到亚马逊的青睐后,会火起来吗?
随着人工智能的发展,现代科技公司的终极目标是构建无需人类介入、能够自我思考的 AI 软件。
亚马逊首席技术官 Werner Vogels 在周二的一篇博客文章中表示,亚马逊网络服务公司(AWS)刚刚选择 MXNet 作为其最主要的深度学习框架。
,如文章所述,深度学习是 AI 的一个子集,包含神经网络的使用。神经网络在算法(而非人类程序员)的帮助下通过处理大量数据来学习并解决问题。
Vogels 表示,AWS 将为 MXNet 及支持其生态系统的其他公司提供软件代码、文档和开发资金。虽然他同时表明,该公司也支持其他深度学习框架,包括 Caffe、CNTK、TensorFlow 和 Torch,但显然在 MXNet 加入后,其他这些框架会被放到次要位置。
TensorFlow 和 CNTK 框架分别是谷歌和微软开发的,Caffe 则来自加州大学伯克利分校的伯克利人工智能研究实验室。
MXNet 的消息恰在亚马逊云服务的年度 AWS RE:Invent 大会前一周发布,亚马逊的高管将在大会上讨论人工智能带来的机会,以及他们将亚马逊的个人助理 Alexa 的工具开放给 AWS 开发者的计划。
为了实现 AI 的终极目标,亚马逊及其竞争对手也在追求尽可能大的数据集。
所以,如果你想知道亚马逊、微软、苹果以及谷歌公司分别从 Alexa、Cortana、Siri 和 Google Home 中得到了什么,记住这一点:所有使用这些智能设备和应用的人都在向这些公司提供非常有价值的数据,应用于这些面向未来的项目。
神经网络本质上是一种语言,我们通过它来表达对应用问题的理解。例如我们用卷积层来表达空间相关性,RNN来表达时间连续性。根据问题的复杂性和信息如何从输入到输出一步步提取,我们将不同大小的层按一定原则连接起来。近年来随着数据的激增和计算能力的大幅提升,神经网络也变得越来越深和大。例如最近几次imagnet竞赛的冠军都使用有数十至百层的网络。对于这一类神经网络我们通常称之为深度学习。从应用的角度而言,对深度学习最重要的是如何方便地表述神经网络,以及如何快速训练得到模型。
对于一个优秀的深度学习系统,或者更广来说优秀的科学计算系统,最重要的是编程接口的设计。他们都采用将一个领域特定语言(domain specific language)嵌入到一个主语言中。例如numpy将矩阵运算嵌入到python中。这类嵌入一般分为两种,其中一种嵌入的较浅,其中每个语句都按原来的意思执行,且通常采用命令式编程(imperative programming),其中numpy和Torch就是属于这种。而另一种则用一种深的嵌入方式,提供一整套针对具体应用的迷你语言。这一种通常使用声明式语言(declarative programming),既用户只需要声明要做什么,而具体执行则由系统完成。这类系统包括Caffe,theano和刚公布的TensorFlow。
这两种方式各有利弊,总结如下:
命令式编程:
如何执行 a=b+1: 需要b已经被赋值。立即执行加法,将结果保存在a中。
优点: 语义上容易理解,灵活,可以精确控制行为。通常可以无缝地和主语言交互,方便地利用主语言的各类算法,工具包,debug和性能调试器。
缺点: 实现统一的辅助函数和提供整体优化都很困难。
声明式编程:
如何执行 a=b+1: 返回对应的计算图(computation graph),我们可以之后对b进行赋值,然后再执行加法运算
优点:在真正开始计算的时候已经拿到了整个计算图,所以我们可以做一系列优化来提升性能。实现辅助函数也容易,例如对任何计算图都提供forward和backward函数,对计算图进行可视化,将图保存到硬盘和从硬盘读取。
缺点:很多主语言的特性都用不上。某些在主语言中实现简单,但在这里却经常麻烦,例如if-else语句 。debug也不容易,例如监视一个复杂的计算图中的某个节点的中间结果并不简单。
几种主要深度学习框架的比较
目前现有的系统大部分都采用上两种编程模式的一种。与它们不同的是,MXNet 尝试将两种模式无缝的结合起来。在命令式编程上 MXNet 提供张量运算,而声明式编程中 MXNet 支持符号表达式。用户可以自由的混合它们来快速实现自己的想法。例如我们可以用声明式编程来描述神经网络,并利用系统提供的自动求导来训练模型。另一方便,模型的迭代训练和更新模型法则中可能涉及大量的控制逻辑,因此我们可以用命令式编程来实现。同时我们用它来进行方便地调式和与主语言交互数据。
Theano 是一个专用于高效计算的低级库。如果你需要细粒度的定制和灵活性,可以直接使用这个库。 TensorFlow 是另一个低级库,比 Theano 还要不成熟。但它是 Google 支持的库,并提供了开箱即用的分布式计算。
Lasagne 是 Theano 中的一个轻量级库。如果你想要 Theano 的灵活性,但不想总是从头开始编写神经网络的层,可以选择 Lasagne。
Keras 是基于 Theano 或 TensorFlow 高层神经网络库。它具有极简化、模块化的优点,而且在实验中非常快速。这是深度学习的最受欢迎的库,也是初学者的最佳入门库。
MXNet 是另一个类似 Keras 的高级库。它提供了多种语言的绑定,并且支持分布式计算。
编译来源:http://fortune.com/2016/11/22/amazon-deep-learning-mxnet/
https://elitedatascience.com/python-deep-learning-libraries
新智元招聘
职位 运营总监
职位年薪:36- 50万(工资+奖金)
工作地点:北京-海淀区
所属部门:运营部
汇报对象:COO
下属人数:2人
年龄要求:25 岁 至 35 岁
性别要求:不限
工作年限:3 年以上
语 言:英语6级(海外留学背景优先)
职位描述
负责大型会展赞助商及参展商拓展、挖掘潜在客户等工作,人工智能及机器人产业方向
擅长开拓市场,并与潜在客户建立良好的人际关系
深度了解人工智能及机器人产业及相关市场状况,随时掌握市场动态
主动协调部门之间项目合作,组织好跨部门间的合作,具备良好的影响力
带领团队完成营业额目标,并监控管理项目状况
负责公司平台运营方面的战略计划、合作计划的制定与实施
岗位要求
大学本科以上学历,硕士优先,要求有较高英语沟通能力
3年以上商务拓展经验,有团队管理经验,熟悉商务部门整体管理工作
对传统全案公关、传统整合传播整体方案、策略性整体方案有深邃见解
具有敏锐的市场洞察力和精确的客户分析能力、较强的团队统筹管理能力
具备优秀的时间管理、抗压能力和多任务规划统筹执行能力
有广泛的TMT领域人脉资源、有甲方市场部工作经验优先考虑
有媒体广告部、市场部,top20公关公司市场拓展部经验者优先
以上是关于财富:亚马逊采用 MXNet ,巨头间深度学习框架之争白热化的主要内容,如果未能解决你的问题,请参考以下文章
亚马逊深度学习框架MXNet加入Apache孵化器,加持4大开源系统
深度学习框架哪家强?MXNet称霸CNNRNN和情感分析,TensorFlow仅擅长推断特征提取