数据挖掘技术在信用卡业务中的应用案例分享

Posted 大数据分析杂谈

tags:

篇首语:本文由小常识网(cha138.com)小编为大家整理,主要介绍了数据挖掘技术在信用卡业务中的应用案例分享相关的知识,希望对你有一定的参考价值。

信用卡业务具有透支笔数巨大、单笔金额小的特点,这使得数据挖掘技术在信用卡业务中的应用成为必然。国外信用卡发卡机构已经广泛应用数据挖掘技术促进信用卡业务的发展,实现全面的绩效管理。我国自1985年发行第一张信用卡以来,信用卡业务得到了长足的发展,积累了巨量的数据,数据挖掘在信用卡业务中的重要性日益显现。

  • 步骤1:求得多变量相关矩阵(若是虚拟变量,则>0.5属于比较相关;若是一般变量,则>0.7-0.8属于比较相关)。

  • 步骤2:旋转主成分分析(一般变量要求>0.8属于比较相关;虚拟变量要求>0.6-0.7属于比较相关)。

  • 步骤3:在第一主成分和第二主成分分别找出15个变量,共30个变量。

  • 步骤4:计算所有30个变量对好/坏的相关性,找出相关性大的变量加入步骤3得出的变量。

  • 步骤5:计算VIF。若VIF数值比较大,查看步骤1中的相关矩阵,并分别分析这两个变量对模型的作用,剔除相关性较小的一个。

  • 步骤6:循环步骤4和步骤5,直到找到所有变量,且达到多变量相关矩阵相关性很而单个变量对模型贡献作用大。

7.模型验证

在收集数据时,把所有整理好的数据分为用于建立模型的建模样本和用于模型验证的对照样本。对照样本用于对模型总体预测性、稳定性进行验证。申请评分模型的模型检验指标包括K-S值、ROC、AR等指标。虽然受到数据不干净等客观因素的影响,本例申请评分模型的K-S值已经超过0.4,达到了可以使用的水平。

四、数据挖掘在国内信用卡市场的发展前景

在国外,信用卡业务信息化程度较高,数据库中保留了大量的数量资源,运用数据技术建立的各类模型在信用卡业务中的实施非常成功。目前国内信用卡发卡银行首先利用数据挖掘建立申请评分模型,作为在信用卡业务中应用的第一步,不少发卡银行已经用自己的历史数据建立了客户化的申请评分模型。总体而言,数据挖掘在我国信用卡业务中的应用处于数据质量问题,难于构建业务模型。

随着国内各家发卡银行已经建立或着手建立数据仓库,将不同操作源的数据存放到一个集中的环境中,并且进行适当的清洗和转换。这为数据挖掘提供了一个很好的操作平台,将给数据挖掘带来各种便利和功能。人民银行的个人征信系统也已上线,在全国范围内形成了个人信用数据的集中。在内部环境和外部环境不断改善的基础上,数据挖掘技术在信用卡业务中将具有越来越广阔的应用前景。

以上是关于数据挖掘技术在信用卡业务中的应用案例分享的主要内容,如果未能解决你的问题,请参考以下文章

RPA在银行行业的应用案例都有哪些?

大数据在政府中的应用案例

技术分享-企业分布式架构设计之分布式事务案例

案例分享|数据可视化下的驱动业务增长

[转]携程大数据实践:高并发应用架构及推荐系统案例

业务系统分析师在数据仓库应用程序中的角色