最小生成树算法Kruskal算法Prim算法切分定理贪心算法

Posted 科院研发中心

tags:

篇首语:本文由小常识网(cha138.com)小编为大家整理,主要介绍了最小生成树算法Kruskal算法Prim算法切分定理贪心算法相关的知识,希望对你有一定的参考价值。

最小生成树算法

生成树:一个连通图的生成树是指一个连通子图,它含有图中全部n个顶点,但只有足以构成一棵树的n-1条边。一颗有n个顶点的生成树有且仅有n-1条边,如果生成树中再添加一条边,则必定成环。

最小生成树:在连通网的所有生成树中,所有边的代价和最小的生成树,称为最小生成树。 

 


Kruskal算法

此算法可以称为“加边法”,初始最小生成树边数为0,每迭代一次就选择一条满足条件的最小代价边,加入到最小生成树的边集合里。 1. 把图中的所有边按代价从小到大排序; 2. 把图中的n个顶点看成独立的n棵树组成的森林; 3. 按权值从小到大选择边,所选的边连接的两个顶点ui,viui,vi,应属于两颗不同的树,则成为最小生成树的一条边,并将这两颗树合并作为一颗树。 4. 重复(3),直到所有顶点都在一颗树内或者有n-1条边为止。

 

 

最小生成树算法、Kruskal算法、Prim算法、切分定理、贪心算法


Prim算法

此算法可以称为“加点法”,每次迭代选择代价最小的边对应的点,加入到最小生成树中。算法从某一个顶点s开始,逐渐长大覆盖整个连通网的所有顶点。

1. 图的所有顶点集合为VV;初始令集合u={s},v=V−uu={s},v=V−u;

2. 在两个集合u,vu,v能够组成的边中,选择一条代价最小的边(u0,v0)(u0,v0),加入到最小生成树中,并把v0v0并入到集合u中。

3. 重复上述步骤,直到最小生成树有n-1条边或者n个顶点为止。

由于不断向集合u中加点,所以最小代价边必须同步更新;需要建立一个辅助数组closedge,用来维护集合v中每个顶点与集合u中最小代价边信息,:

 


切分定理

 


贪心算法

贪心算法总是作出在当前看来最好的选择。也就是说贪心算法并不从整体最优考虑,它所作出的选择只是在某种意义上的局部最优选择。

当然,希望贪心算法得到的最终结果也是整体最优的。虽然贪心算法不能对所有问题都得到整体最优解,但对许多问题它能产生整体最优解。

如单源最短路经问题,最小生成树问题等。在一些情况下,即使贪心算法不能得到整体最优解,其最终结果却是最优解的很好近似


以上是关于最小生成树算法Kruskal算法Prim算法切分定理贪心算法的主要内容,如果未能解决你的问题,请参考以下文章

关于最小生成树的一切

最小生成树之Kruskal算法和Prim算法

最小生成树算法详解(prim+kruskal)

图的最小生成树算法(Prim和Kruskal)

最小生成树算法:Kruskal算法 Prim算法

图论最小生成树Prim和Kruskal算法