动态规划2最大子段和,编辑距离,括号匹配问题...
Posted 生物信息与python
tags:
篇首语:本文由小常识网(cha138.com)小编为大家整理,主要介绍了动态规划2最大子段和,编辑距离,括号匹配问题...相关的知识,希望对你有一定的参考价值。
最大子段和【动态规划】
问题描述:对给定的一段字符比如{-9,10, 20, -30},求出它的最大连续子序列之和。显然对于本序列应该就是{10,20},结果应该为30。
还是按照动态规划的基本套路:(1)dp[i]表示到第i个字符之前(包括第i个字符),所具有的最大子序列之和。(2)状态转移方程。现在假设dp[i-1], dp[i-2]..等等数据全部已经知道,现在要求dp[i]只有两种情况,第一种如果dp[i-1]为负数,则dp[i] = list[i],第二种如果dp[i-1]大于等于0,则dp[i] = dp[i-1] + list[i]代码如下:
if dp[i-1] < 0:
dp[i] = list[i]
else:
dp[i] = dp[i-1] + list[i]
(3)递归边界:dp[1] = list[0]
综上,代码如下:
def getMaxSubSeq(seq: list) -> int:
dp = [0] * (len(seq) + 1)
dp[1] = seq[0]
for i in range(2, len(seq)+1):
if dp[i-1] >= 0:
dp[i] = dp[i-1] + seq[i-1]
else:
dp[i] = seq[i-1]
return max(dp)
if __name__ == '__main__':
print(getMaxSubSeq([-2,11,-4,13,-5,-2]))
##########
20
if s1[i] == s2[j]:
dp[i][j] = dp[i-1][j-1]
else:
dp[i][j] = min(dp[i-1][j]+1, dp[i][j-1]+1,dp[i-1][j-1]+1)
def getEditDistance(s1: str, s2: str):
dp = [[0 for _ in range(len(s2)+1)] for __ in range(len(s1)+1)]
for i in range(len(s1)+1):
dp[i][0] = i
for j in range(len(s2)+1):
dp[0][j] = j
for i in range(1, len(s1)+1):
for j in range(1, len(s2)+1):
if s1[i-1] == s2[j-1]:
dp[i][j] = dp[i-1][j-1]
else:
dp[i][j] = min(dp[i-1][j]+1, dp[i][j-1]+1, dp[i-1][j-1]+1)
return dp[len(s1)][len(s2)]
if __name__ == '__main__':
print(getEditDistance('rad', 'apple'))
###########
5
def isMatched(s: str) -> bool:
def isExited(p: str) -> str:
if p == '}': return '{'
if p == ')': return '('
else: return '['
stack = []
for i in s:
if i == '(' or i == '{' or i == '[':
stack.append(i)
else:
if len(stack) != 0 and stack.pop() == isExited(i):
continue
else:
return False
return True
if __name__ == '__main__':
print(isMatched('[{(})]'))
##########
False
python小技巧:列表生成式:[[0 for i in range(5)] for j in range(5)]
注意:在编辑距离中插入,删除,替换,dp值都要加1,原因是这三种都算是进行了一次修改
以上是关于动态规划2最大子段和,编辑距离,括号匹配问题...的主要内容,如果未能解决你的问题,请参考以下文章