动态规划-中级-II

Posted AI前行之路

tags:

篇首语:本文由小常识网(cha138.com)小编为大家整理,主要介绍了动态规划-中级-II相关的知识,希望对你有一定的参考价值。

1. 解码方式-decode ways


A message containing letters from A-Z is being encoded to numbers using the following mapping:

'A' -> 1
'B' -> 2
...
'Z' -> 26
Given a non-empty string containing only digits, determine the total number of ways to decode it.

Example 1:
Input: "12"
Output: 2
Explanation: It could be decoded as "AB" (1 2) or "L" (12).

Example 2:


Input: "226"


Output: 3


Explanation: It could be decoded as "BZ" (2 26), "VF" (22 6), or "BBF" (2 2 6).


分析:该问题和斐波那契数列本质上相同。构建DP数组,dp[i]表示当前位置下的最大解码方式数。现在考虑当前位置下的解码数与前一个位置的解码数之间的关系。在第i个字符的时候,如果当前字符>1,则dp[i]+=dp[i-1],如果当前字符与前一个字符组成了[10,26]之内的字符,则dp[i]+=dp[i-2]
从例2可以看出,位置为0的时候为1种,位置为1的时候有{2 2},{22}两种,而位置为2时,6在[1.9]内,可以构成独立数字,dp[2]=dp[1];又因为26在[10,26]内,其结果又加上dp[0],结果等于dp[2]=dp[1]+dp[0]。
则可以得到转移方程:dp[i]=dp[i-1]+dp[i-2] if s[i]>0 and s[i-1]s[i] in [10,26], 如果只满足一种条件,则加上相应的值。
note:在考虑转移方程时,这里必须保证当前字符>0,且当前字符与前一个字符组成的字符>=10。比如例“01”,dp[0]=0,dp[1]时应该判断,s[1]>=1,s[0]s[1]>=10
初始化dp[0]=1
class Solution: def numDecodings(self, s: str) -> int: num = [i for i in range(1, 27)] if s == '': return 0 length = len(s) dp = [1] dp += [1] if int(s[0]) in num else [0] for i in range(2, length + 1): dp += [0] if int(s[i - 1]) in num: dp[i] += dp[i - 1] if int(s[i - 2] + s[i - 1]) >= 10 and int(s[i - 2] + s[i - 1]) <= 26: dp[i] += dp[i - 2] if s[i - 2] == 0 and s[i - 1] == 0: return 0 return dp[-1]

2. 三角形路径和


Given a triangle, find the minimum path sum from top to bottom. Each step you may move to adjacent numbers on the row below.

For example, given the following triangle

[
    [2],
   [3,4],
  [6,5,7],
 [4,1,8,3]
]
The minimum path sum from top to bottom is 11 (i.e., 2 + 3 + 5 + 1 = 11).

Note:

Bonus point if you are able to do this using only O(n) extra space, where n is the total number of rows in the triangle.

问题:给定三角形,找到自顶向下的最小路径和。每一次可以移动到下一行相邻的数字。
分析:很典型的动态规划问题,这里可以建立一个尺寸等于三角形的dp数组,其中dp[i]表示自顶到第i行时的路径和,当i>=2时,由于i=1有两个值,i=2时会有一个重叠值,这里重叠的值可以取最小。最后返回最后一行的min即可。
class Solution: def minimumTotal(self, triangle) -> int: dp=[[triangle[0][0]]] for i in range(1,len(triangle)): for j in range(len(triangle[i])): if j==0: dp.append([dp[i-1][0]+triangle[i][0]]) elif j==len(triangle[i])-1: dp[i].append(dp[i-1][-1]+triangle[i][-1]) else: dp[i].append(min(dp[i-1][j-1]+triangle[i][j],dp[i-1][j]+triangle[i][j])) return min(dp[-1])
# 这里是构建了DP数组,需要额外的O(n) space。考虑到每次计算时只利用上一行的值,可以不额外构建dp数组,直接在原有数组上进行计算来释放空间。class Solution: def minimumTotal(self, triangle) -> int: for i in range(1,len(triangle)): triangle[i][0]+=triangle[i-1][0] triangle[i][-1]+=triangle[i-1][-1] for j in range(1,len(triangle[i])-1): triangle[i][j]=min(triangle[i-1][j-1]+triangle[i][j],triangle[i-1][j]+triangle[i][j]) return min(triangle[-1])

3. 插入与删除


Given a non-empty string s and a dictionary wordDict containing a list of non-empty words, determine if s can be segmented into a space-separated sequence of one or more dictionary words.

Note:

The same word in the dictionary may be reused multiple times in the segmentation.
You may assume the dictionary does not contain duplicate words.
Example 1:

Input: s = "leetcode", wordDict = ["leet", "code"]
Output: true
Explanation: Return true because "leetcode" can be segmented as "leet code".
Example 2:

Input: s = "applepenapple", wordDict = ["apple", "pen"]
Output: true
Explanation: Return true because "applepenapple" can be segmented as "apple pen apple".
            Note that you are allowed to reuse a dictionary word.
Example 3:

Input: s = "catsandog", wordDict = ["cats", "dog", "sand", "and", "cat"]
Output: false

问题:给定非空字符串s和字典wordDict,包含非空单词list,判断s能不能被分割成一个或多个字典单词。
分析:依然使用dp的方法,构建dp数组。考虑一下,如果结果为true,那么从左往右进行匹配的话,s的最后一个字符肯定是在字典中的。那么,可以对dp进行定义,dp[i]表示索引为i的字符是以字典中的单词结尾的。
比如 leetcode, dp[3]=True,因为s[:4] in wordDict. dp[7]=True,因为s[4:] in wordDict且dp[7-len(code)]=True。这样,迭代的比较子串是否在字典中,并对索引i下的dp赋值,如果dp[-1]为True,则表明能够完全分割。
初始化dp:长度等于字符串的数组,值全为False

class Solution: def wordBreak(self, s: str, wordDict: List[str]) -> bool: dp=[False]* len(s) for i in range(len(s)): for w in wordDict: if w == s[i-len(w)+1:i+1] and (dp[i-len(w)]==True or i -len(w) == -1): dp[i]=True return dp[-1]








以上是关于动态规划-中级-II的主要内容,如果未能解决你的问题,请参考以下文章

算法动态规划 ⑤ ( LeetCode 63.不同路径 II | 问题分析 | 动态规划算法设计 | 代码示例 )

动态规划-中级

Leetcode-不同路径I和II(计数型动态规划)

Leetcode-不同路径I和II(计数型动态规划)

Leetcode-不同路径I和II(计数型动态规划)

Leetcode-跳跃游戏I和II(动态规划)