Hadoop十大核心组件

Posted SRE实战

tags:

篇首语:本文由小常识网(cha138.com)小编为大家整理,主要介绍了Hadoop十大核心组件相关的知识,希望对你有一定的参考价值。

1、Hadoop生态系统

2、HDFS(Hadoop分布式文件系统)

源自于Google的GFS论文,发表于2003年10月,HDFS是GFS克隆版。

是Hadoop体系中数据存储管理的基础。它是一个高度容错的系统,能检测和应对硬件故障,用于在低成本的通用硬件上运行。HDFS简化了文件的一致性模型,通过流式数据访问,提供高吞吐量应用程序数据访问功能,适合带有大型数据集的应用程序。

Hadoop十大核心组件

Client:切分文件;访问HDFS;与NameNode交互,获取文件位置信息;与DataNode交互,读取和写入数据。

NameNode:Master节点,在hadoop1.X中只有一个,管理HDFS的名称空间和数据块映射信息,配置副本策略,处理客户端请求。

DataNode:Slave节点,存储实际的数据,汇报存储信息给NameNode。

Secondary NameNode:辅助NameNode,分担其工作量;定期合并fsimage和fsedits,推送给NameNode;紧急情况下,可辅助恢复NameNode,但Secondary NameNode并非NameNode的热备。

3、Mapreduce(分布式计算框架)

源自于google的MapReduce论文,发表于2004年12月,Hadoop MapReduce是google MapReduce 克隆版。

源自于google的MapReduce论文

MapReduce是一种计算模型,用以进行大数据量的计算。其中Map对数据集上的独立元素进行指定的操作,生成键-值对形式中间结果。Reduce则对中间结果中相同“键”的所有“值”进行规约,以得到最终结果。MapReduce这样的功能划分,非常适合在大量计算机组成的分布式并行环境里进行数据处理。

Hadoop十大核心组件

JobTracker:Master节点,只有一个,管理所有作业,作业/任务的监控、错误处理等;将任务分解成一系列任务,并分派给TaskTracker。

TaskTracker:Slave节点,运行Map Task和Reduce Task;并与JobTracker交互,汇报任务状态。

Map Task:解析每条数据记录,传递给用户编写的map(),并执行,将输出结果写入本地磁盘(如果为map-only作业,直接写入HDFS)。

Reducer Task:从Map Task的执行结果中,远程读取输入数据,对数据进行排序,将数据按照分组传递给用户编写的reduce函数执行。

Mapreduce处理流程,以wordCount为例:

Hadoop十大核心组件

4、Hive(基于Hadoop的数据仓库)

由facebook开源,最初用于解决海量结构化的日志数据统计问题。

Hive定义了一种类似SQL的查询语言(HQL),将SQL转化为MapReduce任务在Hadoop上执行。

通常用于离线分析。

5、Hbase(分布式列存数据库)

源自Google的Bigtable论文,发表于2006年11月,HBase是Google Bigtable克隆版

HBase是一个针对结构化数据的可伸缩、高可靠、高性能、分布式和面向列的动态模式数据库。和传统关系数据库不同,HBase采用了BigTable的数据模型:增强的稀疏排序映射表(Key/Value),其中,键由行关键字、列关键字和时间戳构成。HBase提供了对大规模数据的随机、实时读写访问,同时,HBase中保存的数据可以使用MapReduce来处理,它将数据存储和并行计算完美地结合在一起。

数据模型:Schema-->Table-->Column Family-->Column-->RowKey-->TimeStamp-->Value

6、Zookeeper(分布式协作服务)

源自Google的Chubby论文,发表于2006年11月,Zookeeper是Chubby克隆版

解决分布式环境下的数据管理问题:统一命名,状态同步,集群管理,配置同步等。

7、Sqoop(数据同步工具)

Sqoop是SQL-to-Hadoop的缩写,主要用于传统数据库和Hadoop之前传输数据。

数据的导入和导出本质上是Mapreduce程序,充分利用了MR的并行化和容错性。

8、Pig(基于Hadoop的数据流系统)

由yahoo!开源,设计动机是提供一种基于MapReduce的ad-hoc(计算在query时发生)数据分析工具

定义了一种数据流语言—Pig Latin,将脚本转换为MapReduce任务在Hadoop上执行。

通常用于进行离线分析。

9、Mahout(数据挖掘算法库)

Mahout起源于2008年,最初是Apache Lucent的子项目,它在极短的时间内取得了长足的发展,现在是Apache的顶级项目。

Mahout的主要目标是创建一些可扩展的机器学习领域经典算法的实现,旨在帮助开发人员更加方便快捷地创建智能应用程序。Mahout现在已经包含了聚类、分类、推荐引擎(协同过滤)和频繁集挖掘等广泛使用的数据挖掘方法。除了算法,Mahout还包含数据的输入/输出工具、与其他存储系统(如数据库、MongoDB 或Cassandra)集成等数据挖掘支持架构。

10、Flume(日志收集工具)

Cloudera开源的日志收集系统,具有分布式、高可靠、高容错、易于定制和扩展的特点。它将数据从产生、传输、处理并最终写入目标的路径的过程抽象为数据流,在具体的数据流中,数据源支持在Flume中定制数据发送方,从而支持收集各种不同协议数据。同时,Flume数据流提供对日志数据进行简单处理的能力,如过滤、格式转换等。此外,Flume还具有能够将日志写往各种数据目标(可定制)的能力。总的来说,Flume是一个可扩展、适合复杂环境的海量日志收集系统。


以上是关于Hadoop十大核心组件的主要内容,如果未能解决你的问题,请参考以下文章

hadoop基础概念之Hadoop核心组件

hadoop核心组件

SpringCloud五大核心组件

hadoop基础概念之Hadoop核心组件

hadoop三大核心组件介绍

学习笔记Hadoop—— Hadoop介绍——Hadoop 核心组件