桶排序计数排序
Posted 想不到一个好的ID
tags:
篇首语:本文由小常识网(cha138.com)小编为大家整理,主要介绍了桶排序计数排序相关的知识,希望对你有一定的参考价值。
桶排序(Bucket sort)
桶排序,顾名思义,会用到“桶”,核心思想是将要排序的数据分到几个有序的桶里,每个桶里的数据再单独进行排序。桶内排完序之后,再把每个桶里的数据按照顺序依次取出,组成的序列就是有序的了。
桶排序的时间复杂度为什么是O(n)呢?
如果要排序的数据有n个,我们把它们均匀地划分到m个桶内,每个桶里就有k=n/m个元素。每个桶内部使用快速排序,时间复杂度为O(k * logk)。m个桶排序的时间复杂度就是O(m * k * logk),因为k=n/m,所以整个桶排序的时间复杂度就是O(n*log(n/m))。当桶的个数m接近数据个数n时, log(n/m)就是一个非常小的常量,这个时候桶排序的时间复杂度接近O(n)。
桶排序看起来很优秀,那它是不是可以替代我们之前讲的排序算法呢?
答案当然是否定的。实际上,桶排序对要排序数据的要求是非常苛刻的。
首先,要排序的数据需要很容易就能划分成m个桶,并且,桶与桶之间有着天然的大小顺序。这样每个桶内的数据都排序完之后,桶与桶之间的数据不需要再进行排序。
其次,数据在各个桶之间的分布是比较均匀的。如果数据经过桶的划分之后,有些桶里的数据非常多,有些非常少,很不平均,那桶内数据排序的时间复杂度就不是常量级了。在极端情况下,如果数据都被划分到一个桶里,那就退化为O(nlogn)的排序算法了。
桶排序比较适合用在外部排序中。所谓的外部排序就是数据存储在外部磁盘中,数据量比较大,内存有限,无法将数据全部加载到内存中。
比如说我们有10GB的订单数据,我们希望按订单金额(假设金额都是正整数)进行排序,但是我们的内存有限,只有几百MB,没办法一次性把10GB的数据都加载到内存中。这个时候该怎么办呢?
如何借助桶排序的处理思想来解决这个问题。
我们可以先扫描一遍文件,看订单金额所处的数据范围。假设经过扫描之后我们得到,订单金额最小是1元,最大是10万元。我们将所有订单根据金额划分到100个桶里,第一个桶我们存储金额在1元到1000元之内的订单,第二桶存储金额在1001元到2000元之内的订单,以此类推。每一个桶对应一个文件,并且按照金额范围的大小顺序编号命名(00, 01, 02…99)。
理想的情况下,如果订单金额在1到10万之间均匀分布,那订单会被均匀划分到100个文件中,每个小文件中存储大约100MB的订单数据,我们就可以将这100个小文件依次放到内存中,用快排来排序。等所有文件都排好序之后,我们只需要按照文件编号,从小到大依次读取每个小文件中的订单数据,并将其写入到一个文件中,那这个文件中存储的就是按照金额从小到大排序的订单数据了。
不过,你可能也发现了,订单按照金额在1元到10万元之间并不一定是均匀分布的 ,所以10GB订单数据是无法均匀地被划分到100个文件中的。有可能某个金额区间的数据特别多,划分之后对应的文件就会很大,没法一次性读入内存。这又该怎么办呢?
针对这些划分之后还是比较大的文件,我们可以继续划分,比如,订单金额在1元到1000元之间的比较多,我们就将这个区间继续划分为10个小区间, 1元到100元, 101元到200元, 201元到300元…901元到1000元。如果划分之后, 101元到200元之间的订单还是太多,无法一次性读入内存,那就继续再划分,直到所有的文件都能读入内存为止。
计数排序(Counting sort)
计数排序其实是桶排序的一种特殊情况。当要排序的n个数据,所处的范围并不大的时候,比如最大值是k,我们就可以把数据划分成k个桶。每个桶内的数据值都是相同的,省掉了桶内排序的时间。
我们都经历过高考,高考查分数系统你还记得吗?我们查分数的时候,系统会显示我们的成绩以及所在省的排名。如果你所在的省有50万考生,如何通过成绩快速排序得出名次呢?考生的满分是900分,最小是0分,这个数据的范围很小,所以我们可以分成901个桶,对应分数从0分到900分。根据考生的成绩,我们将这50万考生划分到这901个桶里。桶内的数据都是分数相同的考生,所以并不需要再进行排序。我们只需要依次扫描每个桶,将桶内的考生依次输出到一个数组中,就实现了50万考生的排序。因为只涉及扫描遍历操作,所以时间复杂度是O(n)。计数排序的算法思想就是这么简单,跟桶排序非常类似,只是桶的大小粒度不一样。
不过,为什么这个排序算法叫“计数”排序呢?“计数”的含义来自哪里呢?
还拿考生那个例子来解释。为了方便说明,对数据规模做了简化。假设只有8个考生,分数在0到5分之间。这8个考生的成绩我们放在一个数组A[8]中,它们分别是:2,5,3,0,2,3,0,3。考生的成绩从0到5分,我们使用大小为6的数组C[6]表示桶,其中下标对应分数。不过,C[6]内存储的并不是考生,而是对应的考生个数。像我刚刚举的那个例子,我们只需要遍历一遍考生分数,就可以得到C[6]的值。
从图中可以看出,分数为3分的考生有3个,小于3分的考生有4个,所以,成绩为3分的考生在排序之后的有序数组R[8]中,会保存下标4,5,6的位置。
那我们如何快速计算出,每个分数的考生在有序数组中对应的存储位置呢?这个处理方法非常巧妙,很不容易想到。思路是这样的:我们对C[6]数组顺序求和,C[6]存储的数据就变成了下面这样子。C[k]里存储小于等于分数k的考生个数。
我们从后到前依次扫描数组A。比如,当扫描到3时,我们可以从数组C中取出下标为3的值7,也就是说,到目前为止,包括自己在内,分数小于等于3的考生有7个,也就是说3是数组R中的第7个元素(也就是数组R中下标为6的位置)。当3放入到数组R中后,小于等于3的元素就只剩下了6个了,所以相应的C[3]要减1,变成6。
以此类推,当我们扫描到第2个分数为3的考生的时候,就会把它放入数组R中的第6个元素的位置(也就是下标为5的位置)。当我们扫描完整个数组A后,数组R内的数据就是按照分数从小到大有序排列的了。
// 计数排序,a是数组,n是数组大小。假设数组中存储的都是非负整数。
public void countingSort(int[] a, int n) {
if (n <= 1) return;
// 查找数组中数据的范围
int max = a[0];
for (int i = 1; i < n; ++i) {
if (max < a[i]) { max = a[i];
} }
int[] c = new int[max + 1];
// 申请一个计数数组c,下标大小[0,max]
for (int i = 0; i <= max; ++i)
{ c[i] = 0; }
// 计算每个元素的个数,放入c中
for (int i = 0; i < n; ++i)
{ c[a[i]]++; }
// 依次累加
for (int i = 1; i <= max; ++i)
{ c[i] = c[i-1] + c[i]; }
// 临时数组r,存储排序之后的结果
int[] r = new int[n];
// 计算排序的关键步骤,有点难理解
for (int i = n - 1; i >= 0; --i)
{ int index = c[a[i]]-1;
r[index] = a[i];
c[a[i]]--; }
// 将结果拷贝给a数组
for (int i = 0; i < n; ++i)
{ a[i] = r[i]; }}
计数排序只能用在数据范围不大的场景中,如果数据范围k比要排序的数据n大很多,就不适合用计数排序了。而且,计数排序只能给非负整数排序,如果要排序的数据是其他类型的,要将其在不改变相对大小的情况下,转化为非负整数。比如,还是拿考生这个例子。如果考生成绩精确到小数后一位,我们就需要将所有的分数都先乘以10,转化成整数,然后再放到9010个桶内。再比如,如果要排序的数据中有负数,数据的范围是[-1000, 1000],那我们就需要先对每个数据都加1000,转化成非负整数。
基数排序(Radix sort)
假设我们有10万个手机号码,希望将这10万个手机号码从小到大排序,你有什么比较快速的排序方法呢?
我们之前讲的快排,时间复杂度可以做到O(nlogn),还有更高效的排序算法吗?桶排序、计数排序能派上用场吗?手机号码有11位,范围太大,显然不适合用这两种排序算法。
针对这个排序问题,有没有时间复杂度是O(n)的算法呢?
基数排序。刚刚这个问题里有这样的规律:假设要比较两个手机号码a,b的大小,如果在前面几位中,a手机号码已经比b手机号码大了,那后面的几位就不用看了。借助稳定排序算法,这里有一个巧妙的实现思路。先按照最后一位来排序手机号码,然后,再按照倒数第二位重新排序,以此类推,最后按照第一位重新排序。经过11次排序之后,手机号码就都有序了。手机号码稍微有点长,画图比较不容易看清楚,用字符串排序的例子,画了一张基数排序的过程分解图。
注意,这里按照每位来排序的排序算法要是稳定的,否则这个实现思路就是不正确的。
因为如果是非稳定排序算法,那最后一次排序只会考虑最高位的大小顺序,完全不管其他位的大小关系,那么低位的排序就完全没有意义了。
根据每一位来排序,我们可以用刚讲过的桶排序或者计数排序,它们的时间复杂度可以做到O(n)。如果要排序的数据有k位,那我们就需要k次桶排序或者计数排序,总的时间复杂度是O(k*n)。当k不大的时候,比如手机号码排序的例子,k最大就是11,所以基数排序的时间复杂度就近似于O(n)。
实际上,有时候要排序的数据并不都是等长的,比如我们排序牛津字典中的 万个英文单词,最短的只有 个字母,最长的我特意去查了下,有个字母,中文翻译是尘肺病。
对于这种不等长的数据,基数排序还适用吗?实际上,我们可以把所有的单词补齐到相同长度,位数不够的可以在后面补“0”,因为根据ASCII值,所有字母都大于“0”,所以补“0”不会影响到原有的大小顺序。这样就可以继续用基数排序了。
基数排序对要排序的数据是有要求的,需要可以分割出独立的“位”来比较,而且位之间有递进的关系,如果a数据的高位比b数据大,那剩下的低位就不用比较了。除此之外,每一位的数据范围不能太大,要可以用线性排序算法来排序,否则,基数排序的时间复杂度就无法做到O(n)了。
如何优化快速排序?
我们先来看下,为什么最坏情况下快速排序的时间复杂度是O(n2)呢?我们前面讲过,如果数据原来就是有序的或者接近有序的,每次分区点都选择最后一个数据,那快速排序算法就会变得非常糟糕,时间复杂度就会退化为O(n2)。实际上,这种O(n2)时间复杂度出现的主要原因还是因为我们分区点选的不够合理。那什么样的分区点是好的分区点呢?或者说如何来选择分区点呢?
最理想的分区点是:被分区点分开的两个分区中,数据的数量差不多。如果很粗暴地直接选择第一个或者最后一个数据作为分区点,不考虑数据的特点,肯定会出现之前讲的那样,在某些情况下,排序的最坏情况时间复杂度是O(n2)。为了提高排序算法的性能,我们也要尽可能地让每次分区都比较平均。
两个比较常用、比较简单的分区算法
1.三数取中法我们从区间的首、尾、中间,分别取出一个数,然后对比大小,取这3个数的中间值作为分区点。这样每间隔某个固定的长度,取数据出来比较,将中间值作为分区点的分区算法,肯定要比单纯取某一个数据更好。但是,如果要排序的数组比较大,那“三数取中”可能就不够了,可能要“五数取中”或者“十数取中”。
2.随机法随机法就是每次从要排序的区间中,随机选择一个元素作为分区点。这种方法并不能保证每次分区点都选的比较好,但是从概率的角度来看,也不大可能会出现每次分区点都选的很差的情况,所以平均情况下,这样选的分区点是比较好的。时间复杂度退化为最糟糕的O(n2)的情况,出现的可能性不大。
快速排序是用递归来实现的。递归要警惕堆栈溢出。为了避免快速排序里,递归过深而堆栈过小,导致堆栈溢出,我们有两种解决办法:第一种是限制递归深度。一旦递归过深,超过了我们事先设定的阈值,就停止递归。第二种是通过在堆上模拟实现一个函数调用栈,手动模拟递归压栈、出栈的过程,这样就没有了系统栈大小的限制。
以上是关于桶排序计数排序的主要内容,如果未能解决你的问题,请参考以下文章