前N项和公式
Posted
tags:
篇首语:本文由小常识网(cha138.com)小编为大家整理,主要介绍了前N项和公式相关的知识,希望对你有一定的参考价值。
等比,等差前N项和公式是什么啊有几个帮我写几个,最好写一下什么符号都代表什么!谢谢
等差数列前N项和公式:
①Sn=n*a1+n(n-1)d/2
②Sn=n(a1+an)/2
Sn代表项数之和,n代表项数,a1代表数列的第一项,an代表数列的最后一项,d代表数列的公差。
性质:
⑴数列为等差数列的重要条件是:数列的前n项和S 可以写成S = an^2 + bn的形式(其中a、b为常数).
⑵在等差数列中,当项数为2n (n∈ N+)时,S偶-S奇 = nd,S奇÷S偶=an÷a(n+1) ;当项数为(2n-1)(n∈ N+)时,S奇—S偶=a中 ,S奇÷S偶 =n÷(n-1).
⑶若数列为等差数列,则S n,S2n -Sn ,S3n -S 2n,…仍然成等差数列,公差为k^2d .
(4)若数列an与bn均为等差数列,且前n项和分别是Sn和Tn,则am/bm=S2m-1/T2m-1.
⑸在等差数列中,S = a,S = b (n>m),则S = (a-b).
2. 等比数列前N项和公式:
Sn代表项数之和,n代表项数,a1代表数列的第一项,an代表数列的最后一项,q代表数列的公比。
性质:
①若 m、n、p、q∈N,且m+n=p+q,则aman=apaq;
②在等比数列中,依次每 k项之和仍成等比数列;
③若m、n、q∈N,且m+n=2q,则am×an=(aq)^2;
④ 若G是a、b的等比中项,则G2=ab(G ≠ 0);
⑤在等比数列中,首项a1与公比q都不为零.
⑥在数列an中每隔k(k∈N*)取出一项,按原来顺序排列,所得新数列仍为等比数列且公比为qk+1
⑦当数列an使各项都为正数的等比数列,数列lgan是lgq的等差数列。
参考技术A通常所说的前n项和的公式包括等差数列和等比数列等。公式如下:
等差数列an的通项公式为:an=a1+(n-1)d。前n项和公式为:Sn=n*a1+n(n-1)d/2或Sn=n(a1+an)/2。注意: 以上n均属于正整数。
等比数列前n项和公式:
若数列{an}是公比为q的等比数列,则它的前n项和公式是
不规则的数列或者规律不明显的数列需要运用多种数学方法,包括归纳法,错位相减法等等。
·关于数列:数列(sequence of number)是以正整数集(或它的有限子集)为定义域的函数,是一列有序的数。数列中的每一个数都叫做这个数列的项。排在第一位的数称为这个数列的第1项(通常也叫做首项),排在第二位的数称为这个数列的第2项……排在第n位的数称为这个数列的第n项,通常用an表示。
通项公式an=a1+(n-1)d 首项a1,公差d, an第n项数
an=ak+(n-k)d ak为第k项数
若a,A,b构成等差数列 则 A=(a+b)/2
2.等差数列前n项和:
设等差数列an的前n项和为Sn
即 Sn=a1+a2+...+an;
那么 Sn=na1+n(n-1)d/2
=dn^2(即n的2次方) /2+(a1-d/2)n
还有以下的求和方法: 1,不完全归纳法 2 累加法 3 倒序相加法
(二)1.等比数列an:
通项公式 an=a1*q^(n-1)(即q的n-1次方) a1为首项,an为第n项
an=a1*q^(n-1,am=a1*q^(m-1))
则an/am=q^(n-m)
(1)an=am*q^(n-m)
(2)a,G,b 若构成等比中项,则G^2=ab (a,b,G不等于0)
(3)若m+n=p+q 则 am*an=ap+aq
2.等比数列前n项和an
设 a1,a2,a3...an构成等比数列
前n项和Sn=a1+a2+a3...an
Sn=a1+a1*q+a1*q^2+....a1*q^(n-2)+a1*q^(n-1)(这个公式虽然是最基本公式,但一部分题目中求前n项和是很难用下面那个公式推倒的,这时可能要直接从基本公式推倒过去,所以希望你这个公式也要理解)
Sn=a1(1-q^n)/(1-q)=(a1-an*q)/(1-q);
注: q不等于1;
Sn=na1 注:q=1
求和一般有以下4个方法: 1,不完全归纳法 2 累乘法 3 错位求和法
参考资料:把我当年课堂笔记翻出来,整理了下...
本回答被提问者采纳 参考技术C 没有公式.不过可以查表得到。你把每一项都减1就可以看出来。
前n项和相当于是N+(1加1/2。。。一直加到1/N)
括号内部分可以写为Ln(n)+R
其中R是欧拉常数,值约为0.57721566490,或者你写作:1/n[1/(1/n)+1/(2/n)+………+1/(1/n)]=积分
1/xdx(区间是0到1)
这是一个发散级数 参考技术D 等差数列:Sn=a1n+n(n-1)d/2
等比数列:1:q=1时;Sn=na1
2:q#1时;Sn=a1(1-q的n次方)/(1-q)
数列前n项和都有哪些求法?
1、公式法求和(1)等差数列
(2)等比数列q=i和q≠1
(3)几个常见数列的前n项和:①1+2+3+…+n=[n(n+1)]/2
②1^2+2^2+3^2+…+n^2=[n(n+1)(2n+1)]/6
③1^3+2^3+3^3+…+n^3=[n(n+1)]^2/4
2、倒叙相加法:将一个数列倒过来排列(反序),当它与原来数列对应相加时,如有公因式可提,并且剩余项的和易于求得则可用此法,它是等差数列求和公式的推广。
3、错位相减法(推导等比数列的前n项和公式时所用的方法)
4、裂项相消法:前提是数列中的每一项均能分裂成一正一负两项,一般形如1/a(n+1)an(其中an是等差数列)的数列可用此法。常用裂项技巧有:(1)1/[n(n+k)]=1/k[1/n-1/(n+k)](2)1/(√(n+k)+√n)=1/k[√(n+k)-√n]
(3)1/[(2n+1)(2n-1)]=1/2[1/(2n-1)-1/(2n+1)]
(4)1/[n(n+1)(n+2)]=1/2[1/n(n+1)-1/(n+1)(n+2)]
5、分组转化求和:有一类数列,既不是等差,也不是等比,但若把数列的每一项分成多个项或把数列的项重新组合,就能转化为等差或等比,从而利用等差、等比数列的求和公式解决。 参考技术A 常用的,有两种:(这两个方法,教科书上都有)
一是,等差数列求和方法:倒写相加法
其次,等比数列求和方法:错位相减法
后者用的很多,不仅仅局限于等比数列求和,还适用于一个等差数列乘以一个等比数列构成的新数列的和,即an*bn,其中an是等差数列,公差是d,bn是等比数列,公比是q,
那么an*bn的前n项和
Sn
=
a1*b1
+
a2*b2
+
...
+
an*bn,只要两边同乘以q,
q*Sn
=
a1*b1*q
+
a2*b2*q
+
...
+
an*bn*q
=
a1*b2
+
a2*b3
+
...
+
an*b(n+1)
两式错位相减得
(1-q)*Sn
=
a1*b1
+
d*(b2
+
b3
+
...
+
bn)
-
an*b(n+1)
=
...
后面的应该会了 参考技术B (一)
等差数列的前n项和(分组求和)sn
=(1+1)+[a^(-1)+4]+[a^(-2)+7]+……+[a^(1-n)+(3n-2)]
=[1+a^(-1)+a^(-2)+……+a^(1-n)]
+
[1+4+7+……+(3n-2)]
前者为等比数列,公比为a^(-1)
后者为等差数列,公差为3
=[1-a^(-n)]/(1-a)+[1+(3n-2)]*n/2
=[1-a^(-n)]/(1-a)+(3n-1)n/2
(裂项法求和
)
这是分解与组合思想在数列求和中的具体应用.
裂项法的实质是将数列中的每项(通项)分解,然后重新组合,使之能消去一些项,最终达到求和的目的.
通项分解(裂项)如:
(1)1/n(n+1)=1/n-1/(n+1)
(2)1/(2n-1)(2n+1)=1/2[1/(2n-1)-1/(2n+1)]
(3)1/n(n+1)(n+2)=1/2[1/n(n+1)-1/(n+1)(n+2)]
(4)1/(√a+√b)=[1/(a-b)](√a-√b)
(5)
n·n!=(n+1)!-n!
[例]
求数列an=1/n(n+1)
的前n项和.
解:设
an=1/n(n+1)=1/n-1/(n+1)
(裂项)
则
sn=1-1/2+1/2-1/3+1/4…+1/n-1/(n+1)(裂项求和)
=
1-1/(n+1)
=
n/(n+1)
小结:此类变形的特点是将原数列每一项拆为两项之后,其中中间的大部分项都互相抵消了。只剩下有限的几项。
注意:
余下的项具有如下的特点
1余下的项前后的位置前后是对称的。
2余下的项前后的正负性是相反的。(二)(1)
等比数列:a
(n+1)/an=q
(n∈n)。
(2)
通项公式:an=a1×q^(n-1);
推广式:an=am×q^(n-m);
(3)
求和公式:sn=n×a1
(q=1)
sn=a1(1-q^n)/(1-q)
=(a1-an×q)/(1-q)
(q≠1)
(q为公比,n为项数)
以上是关于前N项和公式的主要内容,如果未能解决你的问题,请参考以下文章