id3算法增益值可以为负数吗
Posted
tags:
篇首语:本文由小常识网(cha138.com)小编为大家整理,主要介绍了id3算法增益值可以为负数吗相关的知识,希望对你有一定的参考价值。
参考技术A 可以。ID3算法是由Quinlan首先提出的,增益是负数时可以当做衰减器使用,ID3算法是以信息论为基础,以信息熵和信息增益度为衡量标准,从而实现对数据的归纳分类。SparkMLlib回归算法之决策树
SparkMLlib回归算法之决策树
(一),决策树概念
1,决策树算法(ID3,C4.5 ,CART)之间的比较:
1,ID3算法在选择根节点和各内部节点中的分支属性时,采用信息增益作为评价标准。信息增益的缺点是倾向于选择取值较多的属性,在有些情况下这类属性可能不会提供太多有价值的信息。
2 ID3算法只能对描述属性为离散型属性的数据集构造决策树,其余两种算法对离散和连续都可以处理
2,C4.5算法实例介绍(参考网址:http://m.blog.csdn.net/article/details?id=44726921)
c4.5后剪枝策略:以悲观剪枝为主参考网址:http://www.cnblogs.com/zhangchaoyang/articles/2842490.html
(二) SparkMLlib决策树回归的应用
1,数据集来源及描述:参考http://www.cnblogs.com/ksWorld/p/6891664.html
2,代码实现:
2.1 构建输入数据格式:
val file_bike = "hour_nohead.csv" val file_tree=sc.textFile(file_bike).map(_.split(",")).map{ x => val feature=x.slice(2,x.length-3).map(_.toDouble) val label=x(x.length-1).toDouble LabeledPoint(label,Vectors.dense(feature)) } println(file_tree.first()) val categoricalFeaturesInfo = Map[Int,Int]() val model_DT=DecisionTree.trainRegressor(file_tree,categoricalFeaturesInfo,"variance",5,32)
2.2 模型评判标准(mse,mae,rmsle)
val predict_vs_train = file_tree.map { point => (model_DT.predict(point.features),point.label) /* point => (math.exp(model_DT.predict(point.features)), math.exp(point.label))*/ } predict_vs_train.take(5).foreach(println(_)) /*MSE是均方误差*/ val mse = predict_vs_train.map(x => math.pow(x._1 - x._2, 2)).mean() /* 平均绝对误差(MAE)*/ val mae = predict_vs_train.map(x => math.abs(x._1 - x._2)).mean() /*均方根对数误差(RMSLE)*/ val rmsle = math.sqrt(predict_vs_train.map(x => math.pow(math.log(x._1 + 1) - math.log(x._2 + 1), 2)).mean()) println(s"mse is $mse and mae is $mae and rmsle is $rmsle") /* mse is 11611.485999495755 and mae is 71.15018786490428 and rmsle is 0.6251152586960916 */
(三) 改进模型性能和参数调优
1,改变目标量 (对目标值求根号),修改下面语句
LabeledPoint(math.log(label),Vectors.dense(feature)) 和 val predict_vs_train = file_tree.map { /*point => (model_DT.predict(point.features),point.label)*/ point => (math.exp(model_DT.predict(point.features)), math.exp(point.label)) } /*结果 mse is 14781.575988339053 and mae is 76.41310991122032 and rmsle is 0.6405996100717035 */
决策树在变换后的性能有所下降
2,模型参数调优
1,构建训练集和测试集
val file_tree=sc.textFile(file_bike).map(_.split(",")).map{ x => val feature=x.slice(2,x.length-3).map(_.toDouble) val label=x(x.length-1).toDouble LabeledPoint(label,Vectors.dense(feature)) /*LabeledPoint(math.log(label),Vectors.dense(feature))*/ } val tree_orgin=file_tree.randomSplit(Array(0.8,0.2),11L) val tree_train=tree_orgin(0) val tree_test=tree_orgin(1)
2,调节树的深度参数
val categoricalFeaturesInfo = Map[Int,Int]() val model_DT=DecisionTree.trainRegressor(file_tree,categoricalFeaturesInfo,"variance",5,32) /*调节树深度次数*/ val Deep_Results = Seq(1, 2, 3, 4, 5, 10, 20).map { param => val model = DecisionTree.trainRegressor(tree_train, categoricalFeaturesInfo,"variance",param,32) val scoreAndLabels = tree_test.map { point => (model.predict(point.features), point.label) } val rmsle = math.sqrt(scoreAndLabels.map(x => math.pow(math.log(x._1) - math.log(x._2), 2)).mean) (s"$param lambda", rmsle) } /*深度的结果输出*/ Deep_Results.foreach { case (param, rmsl) => println(f"$param, rmsle = ${rmsl}")} /* 1 lambda, rmsle = 1.0763369409492645 2 lambda, rmsle = 0.9735820606349874 3 lambda, rmsle = 0.8786984993014815 4 lambda, rmsle = 0.8052113493915528 5 lambda, rmsle = 0.7014036913077335 10 lambda, rmsle = 0.44747906135994925 20 lambda, rmsle = 0.4769214752638845 */
深度较大的决策树出现过拟合,从结果来看这个数据集最优的树深度大概在10左右
3,调节划分数
/*调节划分数*/ val ClassNum_Results = Seq(2, 4, 8, 16, 32, 64, 100).map { param => val model = DecisionTree.trainRegressor(tree_train, categoricalFeaturesInfo,"variance",10,param) val scoreAndLabels = tree_test.map { point => (model.predict(point.features), point.label) } val rmsle = math.sqrt(scoreAndLabels.map(x => math.pow(math.log(x._1) - math.log(x._2), 2)).mean) (s"$param lambda", rmsle) } /*划分数的结果输出*/ ClassNum_Results.foreach { case (param, rmsl) => println(f"$param, rmsle = ${rmsl}")} /* 2 lambda, rmsle = 1.2995002615220668 4 lambda, rmsle = 0.7682777577495858 8 lambda, rmsle = 0.6615110909041817 16 lambda, rmsle = 0.4981237727958235 32 lambda, rmsle = 0.44747906135994925 64 lambda, rmsle = 0.4487531073836407 100 lambda, rmsle = 0.4487531073836407 */
更多的划分数会使模型变复杂,并且有助于提升特征维度较大的模型性能。划分数到一定程度之后,对性能的提升帮助不大。实际上,由于过拟合的原因会导致测试集的性能变差。可见分类数应在32左右。。
以上是关于id3算法增益值可以为负数吗的主要内容,如果未能解决你的问题,请参考以下文章