聚类算法matlab程序
Posted 气象又服务
tags:
篇首语:本文由小常识网(cha138.com)小编为大家整理,主要介绍了聚类算法matlab程序相关的知识,希望对你有一定的参考价值。
聚类算法matlab程序
clearall
closeall
disp('Theonlyinputneededisadistancematrixfile')
disp('Theformatofthisfileshouldbe:')
disp('Column1:idofelementi')
disp('Column2:idofelementj')
disp('Column3:dist(i,j)')
mdist=input('example_distances');%nameofthedistancematrixfile(withsinglequotes)?\n
disp('Readinginputdistancematrix')
xx=load(mdist);
ND=max(xx(:,2));
NL=max(xx(:,1));
if(NL>ND)
ND=NL;
end
N=size(xx,1);
fori=1:ND
forj=1:ND
dist(i,j)=0;
end
end
fori=1:N
ii=xx(i,1);
jj=xx(i,2);
dist(ii,jj)=xx(i,3);
dist(jj,ii)=xx(i,3);
end
percent=2.0;
fprintf('averagepercentageofneighbours(hardcoded):%5.6f\n',percent);
position=round(N*percent/100);
sda=sort(xx(:,3));
dc=sda(position);
fprintf('ComputingRhowithgaussiankernelofradius:%12.6f\n',dc);
fori=1:ND
rho(i)=0.;
end
%
%Gaussiankernel
%
fori=1:ND-1
forj=i+1:ND
rho(i)=rho(i)+exp(-(dist(i,j)/dc)*(dist(i,j)/dc));rho(j)=rho(j)+exp(-(dist(i,j)/dc)*(dist(i,j)/dc));
end
end
%
%"Cutoff"kernel
%
%fori=1:ND-1
%forj=i+1:ND
%if(dist(i,j)<dc)
%rho(i)=rho(i)+1.;
%rho(j)=rho(j)+1.;
%end
%end
%end
maxd=max(max(dist));
[rho_sorted,ordrho]=sort(rho,'descend');
delta(ordrho(1))=-1.;
nneigh(ordrho(1))=0;
forii=2:ND
delta(ordrho(ii))=maxd;
forjj=1:ii-1
if(dist(ordrho(ii),ordrho(jj))<delta(ordrho(ii)))
delta(ordrho(ii))=dist(ordrho(ii),ordrho(jj));
nneigh(ordrho(ii))=ordrho(jj);
end
end
end
delta(ordrho(1))=max(delta(:));
disp('Generatedfile:DECISIONGRAPH')
disp('column1:Density')
disp('column2:Delta')
fid=fopen('DECISION_GRAPH','w');
fori=1:ND
fprintf(fid,'%6.2f%6.2f\n',rho(i),delta(i));
end
disp('Selectarectangleenclosingclustercenters')
scrsz=get(0,'ScreenSize');
figure('Position',[672scrsz(3)/4.scrsz(4)/1.3]);
fori=1:ND
ind(i)=i;
gamma(i)=rho(i)*delta(i);
end
subplot(2,1,1)
tt=plot(rho(:),delta(:),'o','MarkerSize',5,'MarkerFaceColor','k','MarkerEdgeColor','k');
title('DecisionGraph','FontSize',15.0)
xlabel('\rho')
ylabel('\delta')
subplot(2,1,1)
rect=getrect(1);
rhomin=rect(1);
deltamin=rect(4);
NCLUST=0;
fori=1:ND
cl(i)=-1;
end
fori=1:ND
if((rho(i)>rhomin)&&(delta(i)>deltamin))
NCLUST=NCLUST+1;
cl(i)=NCLUST;
icl(NCLUST)=i;
end
end
fprintf('NUMBEROFCLUSTERS:%i\n',NCLUST);
disp('Performingassignation')
%assignation
fori=1:ND
if(cl(ordrho(i))==-1)
cl(ordrho(i))=cl(nneigh(ordrho(i)));
end
end
%halo
fori=1:ND
halo(i)=cl(i);
end
if(NCLUST>1)
fori=1:NCLUST
bord_rho(i)=0.;
end
fori=1:ND-1
forj=i+1:ND
if((cl(i)~=cl(j))&&(dist(i,j)<=dc))
rho_aver=(rho(i)+rho(j))/2.;
if(rho_aver>bord_rho(cl(i)))
bord_rho(cl(i))=rho_aver;
end
if(rho_aver>bord_rho(cl(j)))
bord_rho(cl(j))=rho_aver;
end
end
end
end
fori=1:ND
if(rho(i)<bord_rho(cl(i)))
halo(i)=0;
end
end
end
fori=1:NCLUST
nc=0;
nh=0;
forj=1:ND
if(cl(j)==i)
nc=nc+1;
end
if(halo(j)==i)
nh=nh+1;
end
end
fprintf('CLUSTER:%iCENTER:%iELEMENTS:%iCORE:%iHALO:%i\n',i,icl(i),nc,nh,nc-nh);
end
cmap=colormap;
fori=1:NCLUST
ic=int8((i*64.)/(NCLUST*1.));
subplot(2,1,1)
holdon
plot(rho(icl(i)),delta(icl(i)),'o','MarkerSize',8,'MarkerFaceColor',cmap(ic,:),'MarkerEdgeColor',cmap(ic,:));
end
subplot(2,1,2)
disp('Performing2Dnonclassicalmultidimensionalscaling')
Y1=mdscale(dist,2,'criterion','metricstress');
plot(Y1(:,1),Y1(:,2),'o','MarkerSize',2,'MarkerFaceColor','k','MarkerEdgeColor','k');
title('2DNonclassicalmultidimensionalscaling','FontSize',15.0)
xlabel('X')
ylabel('Y')
fori=1:ND
A(i,1)=0.;
A(i,2)=0.;
end
fori=1:NCLUST
nn=0;
ic=int8((i*64.)/(NCLUST*1.));
forj=1:ND
if(halo(j)==i)
nn=nn+1;
A(nn,1)=Y1(j,1);
A(nn,2)=Y1(j,2);
end
end
holdon
plot(A(1:nn,1),A(1:nn,2),'o','MarkerSize',2,'MarkerFaceColor',cmap(ic,:),'MarkerEdgeColor',cmap(ic,:));
end
%fori=1:ND
%if(halo(i)>0)
%ic=int8((halo(i)*64.)/(NCLUST*1.));
%holdon
%
plot(Y1(i,1),Y1(i,2),'o','MarkerSize',2,'MarkerFaceColor',cmap(ic,:),'MarkerEdgeColor',cmap(ic,:));
%end
%end
faa=fopen('CLUSTER_ASSIGNATION','w');
disp('Generatedfile:CLUSTER_ASSIGNATION')
disp('column1:elementid')
disp('column2:clusterassignationwithouthalocontrol')
disp('column3:clusterassignationwithhalocontrol')
fori=1:ND
fprintf(faa,'%i%i%i\n',i,cl(i),halo(i));
end
以上是关于聚类算法matlab程序的主要内容,如果未能解决你的问题,请参考以下文章
数据聚类基于matlab杂草算法优化K-means算法数据聚类含Matlab源码 2168期
数学建模MATLAB应用实战系列(106)-机器学习算法:K-means聚类(附MATLAB代码)