excel导入spss后给变量赋值
Posted
tags:
篇首语:本文由小常识网(cha138.com)小编为大家整理,主要介绍了excel导入spss后给变量赋值相关的知识,希望对你有一定的参考价值。
打开SPSS数据编辑窗口,点击视图转换栏中的”变量视图“,进入变量视图页面。方法/步骤2:
定义变量名称:选中某个变量的名称单元格单击,即可编辑变量名称。如果没有预先编辑变量名而直接输入数据的话,会像下图一样显示哦。从技术角度来说,也可以这样做,但具体分析变量的时候一定会很混乱,别人也很难看懂。
方法/步骤3:
定义变量类型:选中某个变量的”类型“单元格,单击即可弹出如下对话框,选取和变量相应的类型。例如:”性别“变量一般选择字符串,只用于分类,而年龄变量一般选择”数值“,用于统计分析,可计算平均年龄。
方法/步骤4:
宽度和小数位数定义:宽度定义指的是变量的宽度,即变量的整数位数,一般系统默认为8;而小数位数指的是变量的小数位,系统默认为2。可以看到,字符串变量是没有小数位的。
方法/步骤5:
变量标签定义:选中某个变量的”标签“单元格,直接输入相应的内容即可定义该变量。它的作用是对变量名称做出进一步的解释和说明,避免遗忘和混淆。
方法/步骤6:
变量值标签定义:经常用。选中某个变量的”值“单元格,单击,弹出以下对话框。如:定义性别变量值时,0代表女生,1代表男生。
注意事项
一定要定义变量类型,字符串变量是不能进行加减乘数运算的,和命名变量其实是一样的。 参考技术A 将SPSS的“数据视图”转换成“变量视图”,利用“变量视图”页面的值标签,就可以对其进行赋值。变量视图主要是用来存放变量的,里边包括变量名称,变量类型,宽度,小数,标签,值,缺失,列,对齐和度量标准几个标签。
SPSS(Statistical Product and Service Solutions),“统计产品与服务解决方案”软件。最初软件全称为“社会科学统计软件包”(Solutions Statistical Package for the Social Sciences),但是随着SPSS产品服务领域的扩大和服务深度的增加,SPSS公司已于2000年正式将英文全称更改为“统计产品与服务解决方案”,这标志着SPSS的战略方向正在做出重大调整。SPSS为IBM公司推出的一系列用于统计学分析运算、数据挖掘、预测分析和决策支持任务的软件产品及相关服务的总称,有Windows和Mac OS X等版本。
SPSS详细教程 OR值的计算
SPSS详细教程:OR值的计算一、问题与数据研究者想要探索人群中不同性别者喜欢竞技类或娱乐性体育活动是否有差异。研究者从学习运动医学的学
参考技术A SPSS详细教程:OR值的计算一、问题与数据
研究者想要探索人群中不同性别者喜欢竞技类或娱乐性体育活动是否有差异。研究者从学习运动医学的学生中随机招募50名学生,记录性别并询问他们喜欢竞技类还是娱乐性活动,通过计算比值比来探索这一差异。
性别变量为gender,男性赋值为1,女性赋值为2;喜欢竞技类运动的变量为comp,是赋值为1,否(即喜欢休闲类运动)赋值为2。部分数据如下图显示,左图为原始数据,右图为按性别和喜欢竞技类运动与否统计的汇总数据。
二、对问题的分析
为计算比值比,需要满足以下两个假设:
1. 假设1:自变量和因变量均为二分类变量。
2. 假设2:观测间相互独立。
接下来,将介绍计算比值比的SPSS操作。
三、SPSS操作
1. 数据准备
如果研究者使用原始数据,跳过数据准备步骤,直接计算比值比;如果使用按性别和喜欢竞技类运动与否统计的汇总数据,则需要添加权重,步骤如下。
(1)点击主菜单Data > Weight Cases,如下图:
点击后出现Weight Cases对话框,如下图:
(2)勾选Weight cases by选项,激活 键和Frequency Variable: 框,如下图:
(3)将变量freq选入Frequency Variable框,如下图:
(4)点击OK键,为数据加权。
2. 比值比的SPSS操作
(1)点击主菜单Analyze > Descriptive Statistics > Crosstabs,如下图:
点击后出现Crosstabs对话框,如下图:
注意:如果使用频数统计的数据文件,Crosstabs对话框如下图:
(2)将自变量gender选入Row(s):框,因变量comp选入Column(s):框,如下图:
注意:如果使用频数统计的数据文件,Crosstabs对话框如下图:
(3)点击Statistics键,出现Crosstabs Statistics对话框,如下图:
(4)勾选Risk,如下图:
(5)点击Continue键。
(6)点击OK键,生成结果。
四、结果解释
1. 描述性分析
在报告比值比前,研究者应该先查看基本的一些统计量,了解数据特征。本例查看gender*comp Crosstabulation表,如下图:
表中可看到50名研究对象中男性和女性各25人。首先,查看男性喜欢竞技类运动的比值,如下图高亮显示:
25名男性中,18名男性喜欢竞技类运动,7名不喜欢(即喜欢娱乐性运动)。因此,男性喜欢竞技类运动的比值为喜欢与不喜欢的概率之比,即为喜欢竞技类运动的男性数量除以不喜欢的男性数量,得到比值为2.57(18÷7=2.57)。因此对男性来讲,喜欢竞技类运动的概率是喜欢娱乐性运动概率的两倍多。
同理,也可以得到女性的比值。下表中为25名女性喜欢竞技类运动的情况:
25名女性中10名喜欢竞技类运动,15名不喜欢。因此女性喜欢竞技类运动的比值为为喜欢竞技类运动的女性数量除以不喜欢的女性数量,得到比值为0.67(10÷15=0.67)。因此对女性来讲,喜欢竞技类运动的概率是喜欢娱乐性运动概率的0.67倍。
因此,研究者可以汇报:“本研究招募了50名研究对象,男女性各25人。与娱乐性运动(n=7)相比,男性更喜欢竞技类运动(n=18);在女性中则相反,10名女性喜欢竞技类运动、15名女性喜欢娱乐性运动”。
2. 比值比
观察Risk Estimate表可以得到比值比,如下图:
性别与喜欢竞技类运动与否的比值比为3.857,95%置信区间为1.180到12.606。95%置信区间代表研究者有95%的把握确定人群中这一关联的真实比值比在1.180到12.606之间。此外,比值比还可以通过gender*comp Cross tabulation表的两个比值手动算出。
计算性别与喜欢竞技类运动与否的比值比,仅需要用男性的比值除以女性的比值,如下面算式。因此,男性喜欢竞技类运动的可能性是女性3.857倍。
如果比值比大于1且95%置信区间不包括1,代表男性喜欢竞技类运动的可能性大于女性;反之,比值比小于1且95%置信区间不包括1,则代表男性喜欢竞技类运动的可能性小于女性;若比值比的95%置信区间包括1,则说明男女性喜欢竞技类运动的可能性无统计学差异。
五、撰写结论
本研究招募了50名研究对象,男女性各25人。与娱乐性运动(n=7)相比,男性更喜欢竞技类运动(n=18);在女性中则相反,10名女性喜欢竞技类运动、15名女性喜欢娱乐性运动。与女性相比,男性喜欢竞技类运动的比值比是3.857(95%置信区间:1.180-12.606),且有统计学意义。
以上是关于excel导入spss后给变量赋值的主要内容,如果未能解决你的问题,请参考以下文章