红黑树算法的实现与剖析

Posted 计算机与网络安全

tags:

篇首语:本文由小常识网(cha138.com)小编为大家整理,主要介绍了红黑树算法的实现与剖析相关的知识,希望对你有一定的参考价值。

信息安全公益宣传,信息安全知识启蒙。


一般的,红黑树,满足以下五个性质,即只有满足以下性质的树,我们才称之为红黑树:


  1. 每个结点要么是红的,要么是黑的。

  2. 根结点是黑的。

  3. 每个叶结点,即空结点(NIL)是黑的。

  4. 如果一个结点是红的,那么它的俩个儿子都是黑的。

  5. 对每个结点,从该结点到其子孙结点的所有路径上包含相同数目的黑结点。


抓住了红黑树的那5个性质,事情就好办多了。如:


  1. 红黑红黑,要么是红,要么是黑;

  2. 根结点是黑;

  3. 每个叶结点是黑;

  4. 一个红结点,它的俩个儿子必然都是黑的;

  5. 每一条路径上,黑结点的数目等同。


五条性质,合起来,来句顺口溜就是:(1)红黑 (2)黑 (3)黑 (4&5)红->黑 黑。


一、左旋与右旋


先明确一点:为什么要左旋?


因为红黑树插入或删除结点后,树的结构发生了变化,从而可能会破坏红黑树的性质。


为了维持插入、或删除结点后的树,仍然是一颗红黑树,所以有必要对树的结构做部分调整,从而恢复红黑树的原本性质。


而为了恢复红黑性质而作的动作包括:


结点颜色的改变(重新着色),和结点的调整。


这部分结点调整工作,改变指针结构,即是通过左旋或右旋而达到目的。


从而使插入、或删除结点的树重新成为一颗新的红黑树。



如上图所示,‘找茬’


如果你看懂了上述俩幅图有什么区别时,你就知道什么是“左旋”,“右旋”。


在此,着重分析左旋算法:


左旋,如图所示(左->右),以x->y之间的链为“支轴”进行,


使y成为该新子树的根,x成为y的左孩子,而y的左孩子则成为x的右孩子。


算法很简单,还有注意一点,各个结点从左往右,不论是左旋前还是左旋后,结点大小都是从小到大。


左旋代码实现,分三步(注意我给的注释):


The pseudocode for LEFT-ROTATE assumes that right[x] ≠ nil[T] and that the root's parent is nil[T].


LEFT-ROTATE(T, x)

 1  y ← right[x]            ▹ Set y.

 2  right[x] ← left[y]                   //开始变化,y的左孩子成为x的右孩子

 3  if left[y]  !=nil[T]

 4  then p[left[y]] <- x                

 5  p[y] <- p[x]                       //y成为x的父结点

 6  if p[x] = nil[T]

 7     then root[T] <- y

 8     else if x = left[p[x]]

 9             then left[p[x]] ← y

10             else right[p[x]] ← y

11  left[y] ← x             //x成为y的左孩子(一月三日修正)

12  p[x] ← y

//注,此段左旋代码,原书第一版英文版与第二版中文版,有所出入。

//个人觉得,第二版更精准。所以,此段代码以第二版中文版为准。


左旋、右旋都是对称的,且都是在O(1)时间内完成。因为旋转时只有指针被改变,而结点中的所有域都保持不变。


最后,贴出昨下午关于此左旋算法所画的图:


左旋(第2张图):


红黑树算法的实现与剖析

//此图有点bug。第4行的注释移到第11行。如上述代码所示。


二、左旋的一个实例


不做过多介绍,看下副图,一目了然。


LEFT-ROTATE(T, x)的操作过程(第3张图):


红黑树算法的实现与剖析


提醒,看下文之前,请首先务必明确,区别以下俩种操作:

  1. 红黑树插入、删除结点的操作

    //如插入中,红黑树插入结点操作:RB-INSERT(T, z)。

  2. 红黑树已经插入、删除结点之后

         为了保持红黑树原有的红黑性质而做的恢复与保持红黑性质的操作。

        //如插入中,为了恢复和保持原有红黑性质,所做的工作:RB-INSERT-FIXUP(T, z)。


ok,请继续。


三、红黑树的插入算法实现


RB-INSERT(T, z)   //注意我给的注释...

 1  y ← nil[T]                 // y 始终指向 x 的父结点。

 2  x ← root[T]              // x 指向当前树的根结点,

 3  while x ≠ nil[T]

 4      do y ← x

 5         if key[z] < key[x]           //向左,向右..

 6            then x ← left[x]

 7            else x ← right[x]         // 为了找到合适的插入点,x 探路跟踪路径,直到x成为NIL 为止。

 8  p[z] ← y         // y置为 插入结点z 的父结点。

 9  if y = nil[T]

10     then root[T] ← z

11     else if key[z] < key[y]

12             then left[y] ← z

13             else right[y] ← z     //此 8-13行,置z 相关的指针。

14  left[z] ← nil[T]

15  right[z] ← nil[T]            //设为空,

16  color[z] ← RED             //将新插入的结点z作为红色

17  RB-INSERT-FIXUP(T, z)   //因为将z着为红色,可能会违反某一红黑性质,


                                            //所以需要调用RB-INSERT-FIXUP(T, z)来保持红黑性质。


17 行的RB-INSERT-FIXUP(T, z) ,在下文会得到着重而具体的分析。


还记得,我开头说的那句话么,是的,时刻记住,不论是左旋还是右旋,不论是插入、还是删除,都要记得恢复和保持红黑树的5个性质。


四、调用RB-INSERT-FIXUP(T, z)来保持和恢复红黑性质


RB-INSERT-FIXUP(T, z)

 1 while color[p[z]] = RED

 2     do if p[z] = left[p[p[z]]]

 3           then y ← right[p[p[z]]]

 4                if color[y] = RED

 5                   then color[p[z]] ← BLACK                    ▹ Case 1

 6                        color[y] ← BLACK                       ▹ Case 1

 7                        color[p[p[z]]] ← RED                   ▹ Case 1

 8                        z ← p[p[z]]                            ▹ Case 1

 9                   else if z = right[p[z]]

10                           then z ← p[z]                       ▹ Case 2

11                                LEFT-ROTATE(T, z)              ▹ Case 2

12                           color[p[z]] ← BLACK                 ▹ Case 3

13                           color[p[p[z]]] ← RED                ▹ Case 3

14                           RIGHT-ROTATE(T, p[p[z]])            ▹ Case 3

15           else (same as then clause

                         with "right" and "left" exchanged)

16 color[root[T]] ← BLACK


五、红黑树插入的三种情况,即RB-INSERT-FIXUP(T, z)。操作过程(第5张):


红黑树算法的实现与剖析


//这幅图有个小小的问题,读者可能会产生误解。图中左侧所表明的情况2、情况3所标的位置都要标上一点。


//请以图中的标明的case1、case2、case3为准。


六、红黑树插入的第一种情况(RB-INSERT-FIXUP(T, z)代码的具体分析一)


为了保证阐述清晰,重述下RB-INSERT-FIXUP(T, z)的源码:


RB-INSERT-FIXUP(T, z)

 1 while color[p[z]] = RED

 2     do if p[z] = left[p[p[z]]]

 3           then y ← right[p[p[z]]]

 4                if color[y] = RED

 5                   then color[p[z]] ← BLACK                    ▹ Case 1

 6                        color[y] ← BLACK                       ▹ Case 1

 7                        color[p[p[z]]] ← RED                   ▹ Case 1

 8                        z ← p[p[z]]                            ▹ Case 1

 9                   else if z = right[p[z]]

10                           then z ← p[z]                       ▹ Case 2

11                                LEFT-ROTATE(T, z)              ▹ Case 2

12                           color[p[z]] ← BLACK                 ▹ Case 3

13                           color[p[p[z]]] ← RED                ▹ Case 3

14                           RIGHT-ROTATE(T, p[p[z]])            ▹ Case 3

15           else (same as then clause

                         with "right" and "left" exchanged)

16 color[root[T]] ← BLACK


 //case1表示情况1,case2表示情况2,case3表示情况3.


ok,如上所示,相信,你已看到了。


咱们,先来透彻分析红黑树插入的第一种情况:


插入情况1,z的叔叔y是红色的。


第一种情况,即上述代码的第5-8行:


 5                   then color[p[z]] ← BLACK                    ▹ Case 1

 6                        color[y] ← BLACK                       ▹ Case 1

 7                        color[p[p[z]]] ← RED                   ▹ Case 1

 8                        z ← p[p[z]]                            ▹ Case 1


红黑树算法的实现与剖析


如上图所示,a:z为右孩子,b:z为左孩子。


只有p[z]和y(上图a中A为p[z],D为z,上图b中,B为p[z],D为y)都是红色的时候,才会执行此情况1.


咱们分析下上图的a情况,即z为右孩子时


因为p[p[z]],即c是黑色,所以将p[z]、y都着为黑色(如上图a部分的右边),


此举解决z、p[z]都是红色的问题,将p[p[z]]着为红色,则保持了性质5.


ok,看下图(第6张):


红黑树算法的实现与剖析


红黑树插入的第一种情况完。


七、红黑树插入的第二种、第三种情况


插入情况2:z的叔叔y是黑色的,且z是右孩子


插入情况3:z的叔叔y是黑色的,且z是左孩子


这俩种情况,是通过z是p[z]的左孩子,还是右孩子区别的。


红黑树算法的实现与剖析


参照上图,针对情况2,z是她父亲的右孩子,则为了保持红黑性质,左旋则变为情况3,此时z为左孩子,


因为z、p[z]都为黑色,所以不违反红黑性质(注,情况3中,z的叔叔y是黑色的,否则此种情况就变成上述情况1 了)。


ok,我们已经看出来了,情况2,情况3都违反性质4(一个红结点的俩个儿子都是黑色的)。


所以情况2->左旋后->情况3,此时情况3同样违反性质4,所以情况3->右旋,得到上图的最后那部分。


注,情况2、3都只违反性质4,其它的性质1、2、3、5都不违背。


好的,最后,看下图(第7张):


红黑树算法的实现与剖析


八、接下来,进入红黑树的删除部分


RB-DELETE(T, z)

 1 if left[z] = nil[T] or right[z] = nil[T]

 2    then y ← z

 3    else y ← TREE-SUCCESSOR(z)

 4 if left[y] ≠ nil[T]

 5    then x ← left[y]

 6    else x ← right[y]

 7 p[x] ← p[y]

 8 if p[y] = nil[T]

 9    then root[T] ← x

10    else if y = left[p[y]]

11            then left[p[y]] ← x

12            else right[p[y]] ← x

13 if y 3≠ z

14    then key[z] ← key[y]

15         copy y's satellite data into z

16 if color[y] = BLACK               //如果y是黑色的,

17    then RB-DELETE-FIXUP(T, x)   //则调用RB-DELETE-FIXUP(T, x) 

18 return y              //如果y不是黑色,是红色的,则当y被删除时,红黑性质仍然得以保持。不做操作,返回。


                               //因为:1.树种各结点的黑高度都没有变化。2.不存在俩个相邻的红色结点。


                                          //3.因为入宫y是红色的,就不可能是根。所以,根仍然是黑色的。


ok,第8张图,不必贴了。


九、红黑树删除之4种情况,RB-DELETE-FIXUP(T, x)之代码


RB-DELETE-FIXUP(T, x)

 1 while x ≠ root[T] and color[x] = BLACK

 2     do if x = left[p[x]]

 3           then w ← right[p[x]]

 4                if color[w] = RED

 5                   then color[w] ← BLACK                        ▹  Case 1

 6                        color[p[x]] ← RED                       ▹  Case 1

 7                        LEFT-ROTATE(T, p[x])                    ▹  Case 1

 8                        w ← right[p[x]]                         ▹  Case 1

 9                if color[left[w]] = BLACK and color[right[w]] = BLACK

10                   then color[w] ← RED                          ▹  Case 2

11                        x ← p[x]                                  ▹  Case 2

12                   else if color[right[w]] = BLACK

13                           then color[left[w]] ← BLACK          ▹  Case 3

14                                color[w] ← RED                  ▹  Case 3

15                                RIGHT-ROTATE(T, w)              ▹  Case 3

16                                w ← right[p[x]]                 ▹  Case 3

17                         color[w] ← color[p[x]]                 ▹  Case 4

18                         color[p[x]] ← BLACK                    ▹  Case 4

19                         color[right[w]] ← BLACK                ▹  Case 4

20                         LEFT-ROTATE(T, p[x])                   ▹  Case 4

21                         x ← root[T]                            ▹  Case 4

22        else (same as then clause with "right" and "left" exchanged)

23 color[x] ← BLACK 


ok,很清楚,在此,就不贴第9张图了。


在下文的红黑树删除的4种情况,详细、具体分析了上段代码。


十、红黑树删除的4种情况


情况1:x的兄弟w是红色的。


情况2:x的兄弟w是黑色的,且w的俩个孩子都是黑色的。


情况3:x的兄弟w是黑色的,w的左孩子是红色,w的右孩子是黑色。


情况4:x的兄弟w是黑色的,且w的右孩子时红色的。


操作流程图:


红黑树算法的实现与剖析


ok,简单分析下,红黑树删除的4种情况:


针对情况1:x的兄弟w是红色的。


红黑树算法的实现与剖析


 5                   then color[w] ← BLACK                        ▹  Case 1

 6                        color[p[x]] ← RED                       ▹  Case 1

 7                        LEFT-ROTATE(T, p[x])                    ▹  Case 1

 8                        w ← right[p[x]]                         ▹  Case 1


对策:改变w、p[z]颜色,再对p[x]做一次左旋,红黑性质得以继续保持。


x的新兄弟new w是旋转之前w的某个孩子,为黑色。


所以,情况1转化成情况2或3、4。


针对情况2:x的兄弟w是黑色的,且w的俩个孩子都是黑色的。


红黑树算法的实现与剖析


10                   then color[w] ← RED                          ▹  Case 2

11                        x <-p[x]                                  ▹  Case 2


如图所示,w的俩个孩子都是黑色的,


对策:因为w也是黑色的,所以x和w中得去掉一黑色,最后,w变为红。


p[x]为新结点x,赋给x,x<-p[x]。


针对情况3:x的兄弟w是黑色的,w的左孩子是红色,w的右孩子是黑色。


红黑树算法的实现与剖析


13                           then color[left[w]] ← BLACK          ▹  Case 3

14                                color[w] ← RED                  ▹  Case 3

15                                RIGHT-ROTATE(T, w)              ▹  Case 3

16                                w ← right[p[x]]                 ▹  Case 3


w为黑,其左孩子为红,右孩子为黑


对策:交换w和和其左孩子left[w]的颜色。 即上图的D、C颜色互换。:D。


并对w进行右旋,而红黑性质仍然得以保持。


现在x的新兄弟w是一个有红色右孩子的黑结点,于是将情况3转化为情况4.


针对情况4:x的兄弟w是黑色的,且w的右孩子时红色的。



17                         color[w] ← color[p[x]]                 ▹  Case 4

18                         color[p[x]] ← BLACK                    ▹  Case 4

19                         color[right[w]] ← BLACK                ▹  Case 4

20                         LEFT-ROTATE(T, p[x])                   ▹  Case 4

21                         x ← root[T]                            ▹  Case 4


x的兄弟w为黑色,且w的右孩子为红色。


对策:做颜色修改,并对p[x]做一次旋转,可以去掉x的额外黑色,来把x变成单独的黑色,此举不破坏红黑性质。


将x置为根后,循环结束。



ok,红黑树删除的4中情况,分析完成。


结语:只要牢牢抓住红黑树的5个性质不放,而不论是树的左旋还是右旋,不论是红黑树的插入、还是删除,都只为了保持和修复红黑树的5个性质而已。


▼ 点击阅读原文,查看更多精彩文章

以上是关于红黑树算法的实现与剖析的主要内容,如果未能解决你的问题,请参考以下文章

红黑树数据结构剖析

红黑树旋转

数据结构和算法(Golang实现)(29)查找算法-2-3树和左倾红黑树

红黑树深入剖析及Java实现

红黑树深入剖析及Java实现

Java - HashTree源码解析 + 红黑树