红黑树深入剖析及Java实现
Posted 西安海豚智能科技
tags:
篇首语:本文由小常识网(cha138.com)小编为大家整理,主要介绍了红黑树深入剖析及Java实现相关的知识,希望对你有一定的参考价值。
红黑树是平衡二叉查找树的一种。为了深入理解红黑树,我们需要从二叉查找树开始讲起。
BST
二叉查找树(Binary Search Tree,简称BST)是一棵二叉树,它的左子节点的值比父节点的值要小,右节点的值要比父节点的值大。它的高度决定了它的查找效率。
在理想的情况下,二叉查找树增删查改的时间复杂度为O(logN)(其中N为节点数),最坏的情况下为O(N)。当它的高度为logN+1时,我们就说二叉查找树是平衡的。
BST的查找操作
T key = a search key Node root = point to the root of a BSTwhile(true){ if(root==null){ break; } if(root.value.equals(key)){ return root; } else if(key.compareTo(root.value)<0){ root = root.left; } else{ root = root.right; } }return null;
从程序中可以看出,当BST查找的时候,先与当前节点进行比较:
如果相等的话就返回当前节点;
如果少于当前节点则继续查找当前节点的左节点;
如果大于当前节点则继续查找当前节点的右节点。
直到当前节点指针为空或者查找到对应的节点,程序查找结束。
BST的插入操作
Node node = create a new node with specify value Node root = point the root node of a BST Node parent = null;//find the parent node to append the new nodewhile(true){ if(root==null)break; parent = root; if(node.value.compareTo(root.value)<=0){ root = root.left; }else{ root = root.right; } }if(parent!=null){ if(node.value.compareTo(parent.value)<=0){//append to left parent.left = node; }else{//append to right parent.right = node; } }
插入操作先通过循环查找到待插入的节点的父节点,和查找父节点的逻辑一样,都是比大小,小的往左,大的往右。找到父节点后,对比父节点,小的就插入到父节点的左节点,大就插入到父节点的右节点上。
BST的删除操作
删除操作的步骤如下:
查找到要删除的节点。
如果待删除的节点是叶子节点,则直接删除。
如果待删除的节点不是叶子节点,则先找到待删除节点的中序遍历的后继节点,用该后继节点的值替换待删除的节点的值,然后删除后继节点。
BST存在的问题
BST存在的主要问题是,数在插入的时候会导致树倾斜,不同的插入顺序会导致树的高度不一样,而树的高度直接的影响了树的查找效率。理想的高度是logN,最坏的情况是所有的节点都在一条斜线上,这样的树的高度为N。
欢迎各位想学、打算学、准备学,要学的朋友咨询。
网址:http://haitunit.com
学IT,拿高薪,当白领 就来西安海豚智能科技 |
西北地区最优的IT培训机构 |
||||
以上是关于红黑树深入剖析及Java实现的主要内容,如果未能解决你的问题,请参考以下文章