一个套路,写出来二叉树的迭代遍历

Posted 代码随想录

tags:

篇首语:本文由小常识网(cha138.com)小编为大家整理,主要介绍了一个套路,写出来二叉树的迭代遍历相关的知识,希望对你有一定的参考价值。

二叉树的统一迭代法

此时我们在中用递归的方式,实现了二叉树前中后序的遍历。

在中用栈实现了二叉树前后中序的迭代遍历(非递归)。

之后我们发现迭代法实现的先中后序,其实风格也不是那么统一,除了先序和后序,有关联,中序完全就是另一个风格了,一会用栈遍历,一会又用指针来遍历。

实践过的同学,也会发现使用迭代法实现先中后序遍历,很难写出统一的代码,不像是递归法,实现了其中的一种遍历方式,其他两种只要稍稍改一下节点顺序就可以了。

其实针对三种遍历方式,使用迭代法是可以写出统一风格的代码!

重头戏来了,接下来介绍一下统一写法。

我们以中序遍历为例,在中提到说使用栈的话,无法同时解决访问节点(遍历节点)和处理节点(将元素放进结果集)不一致的情况。

那我们就将访问的节点放入栈中,把要处理的节点也放入栈中但是要做标记。

如何标记呢,就是要处理的节点放入栈之后,紧接着放入一个空指针作为标记。 这种方法也可以叫做标记法。

迭代法中序遍历

中序遍历代码如下:(详细注释)

class Solution {
public:
    vector<intinorderTraversal(TreeNode* root) {
        vector<int> result;
        stack<TreeNode*> st;
        if (root != NULL) st.push(root);
        while (!st.empty()) {
            TreeNode* node = st.top();
            if (node != NULL) {
                st.pop(); // 将该节点弹出,避免重复操作,下面再将右中左节点添加到栈中
                if (node->right) st.push(node->right);  // 添加右节点(空节点不入栈)

                st.push(node);                          // 添加中节点
                st.push(NULL); // 中节点访问过,但是还没有处理,加入空节点做为标记。

                if (node->left) st.push(node->left);    // 添加左节点(空节点不入栈)
            } else { // 只有遇到空节点的时候,才将下一个节点放进结果集
                st.pop();           // 将空节点弹出
                node = st.top();    // 重新取出栈中元素
                st.pop();
                result.push_back(node->val); // 加入到结果集
            }
        }
        return result;
    }
};

看代码有点抽象我们来看一下动画(中序遍历):

中序遍历迭代(统一写法)

动画中,result数组就是最终结果集。

可以看出我们将访问的节点直接加入到栈中,但如果是处理的节点则后面放入一个空节点, 这样只有空节点弹出的时候,才将下一个节点放进结果集。

此时我们再来看前序遍历代码。

迭代法前序遍历

迭代法前序遍历代码如下:(注意此时我们和中序遍历相比仅仅改变了两行代码的顺序)

class Solution {
public:
    vector<intpreorderTraversal(TreeNode* root) {
        vector<int> result;
        stack<TreeNode*> st;
        if (root != NULL) st.push(root);
        while (!st.empty()) {
            TreeNode* node = st.top();
            if (node != NULL) {
                st.pop();
                if (node->right) st.push(node->right);  // 右
                if (node->left) st.push(node->left);    // 左
                st.push(node);                          // 中
                st.push(NULL);
            } else {
                st.pop();
                node = st.top();
                st.pop();
                result.push_back(node->val);
            }
        }
        return result;
    }
};

迭代法后序遍历

后续遍历代码如下:(注意此时我们和中序遍历相比仅仅改变了两行代码的顺序)

class Solution {
public:
    vector<intpostorderTraversal(TreeNode* root) {
        vector<int> result;
        stack<TreeNode*> st;
        if (root != NULL) st.push(root);
        while (!st.empty()) {
            TreeNode* node = st.top();
            if (node != NULL) {
                st.pop();
                st.push(node);                          // 中
                st.push(NULL);

                if (node->right) st.push(node->right);  // 右
                if (node->left) st.push(node->left);    // 左

            } else {
                st.pop();
                node = st.top();
                st.pop();
                result.push_back(node->val);
            }
        }
        return result;
    }
};

总结

此时我们写出了统一风格的迭代法,不用在纠结于前序写出来了,中序写不出来的情况了。

但是统一风格的迭代法并不好理解,而且想在面试直接写出来还有难度的。

所以大家根据自己的个人喜好,对于二叉树的前中后序遍历,选择一种自己容易理解的递归和迭代法。

其他语言版本

Java:迭代法前序遍历代码如下:

class Solution {
    public List<Integer> preorderTraversal(TreeNode root) {
        List<Integer> result = new LinkedList<>();
        Stack<TreeNode> st = new Stack<>();
        if (root != null) st.push(root);
        while (!st.empty()) {
            TreeNode node = st.peek();
            if (node != null) {
                st.pop(); // 将该节点弹出,避免重复操作,下面再将右中左节点添加到栈中
                if (node.right!=null) st.push(node.right);  // 添加右节点(空节点不入栈)
                if (node.left!=null) st.push(node.left);    // 添加左节点(空节点不入栈)
                st.push(node);                          // 添加中节点
                st.push(null); // 中节点访问过,但是还没有处理,加入空节点做为标记。
                
            } else { // 只有遇到空节点的时候,才将下一个节点放进结果集
                st.pop();           // 将空节点弹出
                node = st.peek();    // 重新取出栈中元素
                st.pop();
                result.add(node.val); // 加入到结果集
            }
        }
        return result;
    }
}

迭代法中序遍历代码如下:

class Solution {
public List<Integer> inorderTraversal(TreeNode root) {
        List<Integer> result = new LinkedList<>();
    Stack<TreeNode> st = new Stack<>();
    if (root != null) st.push(root);
    while (!st.empty()) {
        TreeNode node = st.peek();
        if (node != null) {
            st.pop(); // 将该节点弹出,避免重复操作,下面再将右中左节点添加到栈中
            if (node.right!=null) st.push(node.right);  // 添加右节点(空节点不入栈)
            st.push(node);                          // 添加中节点
            st.push(null); // 中节点访问过,但是还没有处理,加入空节点做为标记。

            if (node.left!=null) st.push(node.left);    // 添加左节点(空节点不入栈)
        } else { // 只有遇到空节点的时候,才将下一个节点放进结果集
            st.pop();           // 将空节点弹出
            node = st.peek();    // 重新取出栈中元素
            st.pop();
            result.add(node.val); // 加入到结果集
        }
    }
    return result;
}
}

迭代法后序遍历代码如下:

class Solution {
   public List<Integer> postorderTraversal(TreeNode root) {
        List<Integer> result = new LinkedList<>();
        Stack<TreeNode> st = new Stack<>();
        if (root != null) st.push(root);
        while (!st.empty()) {
            TreeNode node = st.peek();
            if (node != null) {
                st.pop(); // 将该节点弹出,避免重复操作,下面再将右中左节点添加到栈中
                st.push(node);                          // 添加中节点
                st.push(null); // 中节点访问过,但是还没有处理,加入空节点做为标记。
                if (node.right!=null) st.push(node.right);  // 添加右节点(空节点不入栈)
                if (node.left!=null) st.push(node.left);    // 添加左节点(空节点不入栈)         
                               
            } else { // 只有遇到空节点的时候,才将下一个节点放进结果集
                st.pop();           // 将空节点弹出
                node = st.peek();    // 重新取出栈中元素
                st.pop();
                result.add(node.val); // 加入到结果集
            }
        }
        return result;
   }
}

Python:

迭代法前序遍历:

class Solution:
    def preorderTraversal(self, root: TreeNode) -> List[int]:
        result = []
        st= []
        if root:
            st.append(root)
        while st:
            node = st.pop()
            if node != None:
                if node.right: #右
                    st.append(node.right)
                if node.left: #左
                    st.append(node.left)
                st.append(node) #中
                st.append(None)
            else:
                node = st.pop()
                result.append(node.val)
        return result

迭代法中序遍历:

class Solution:
    def inorderTraversal(self, root: TreeNode) -> List[int]:
        result = []
        st = []
        if root:
            st.append(root)
        while st:
            node = st.pop()
            if node != None:
                if node.right: #添加右节点(空节点不入栈)
                    st.append(node.right)
                
                st.append(node) #添加中节点
                st.append(None#中节点访问过,但是还没有处理,加入空节点做为标记。
                
                if node.left: #添加左节点(空节点不入栈)
                    st.append(node.left)
            else#只有遇到空节点的时候,才将下一个节点放进结果集
                node = st.pop() #重新取出栈中元素
                result.append(node.val) #加入到结果集
        return result

迭代法后序遍历:

class Solution:
    def postorderTraversal(self, root: TreeNode) -> List[int]:
        result = []
        st = []
        if root:
            st.append(root)
        while st:
            node = st.pop()
            if node != None:
                st.append(node) #中
                st.append(None)
                
                if node.right: #右
                    st.append(node.right)
                if node.left: #左
                    st.append(node.left)
            else:
                node = st.pop()
                result.append(node.val)
        return result

旧文链接:

-------------end------------

Hello,我是Carl,哈工大师兄,先后在BAT中的两家采坑,一位文舞双全的程序员
刷题攻略全部开源在Github上, ,了解刷题攻略, B站同名:代码随想录, ,上B站学算法。Carl还手把手带你写。 大家也可以在公众号左下角 「刷题攻略」 手机端查看详 细攻略。
后台回复: 666 ,可以获得Carl原创算法手册