深度学习笔记-AlexNet

Posted TIME0101

tags:

篇首语:本文由小常识网(cha138.com)小编为大家整理,主要介绍了深度学习笔记-AlexNet相关的知识,希望对你有一定的参考价值。

lexNet模型的名字源于论文第一作者的姓名Alex Krizhevsky 。AlexNet使用了8层卷积神经网络,以很大的优势赢得了ImageNet 2012图像识别挑战赛。它首次证明了学习到的特征可以超越手工设计的特征,从而一举打破计算机视觉研究的前状。

AlexNet与LeNet区别:
第一,相对较小的LeNet相比,AlexNet包含8层变换,其中有5层卷积和2层全连接隐藏层,以及1个全连接输出层。
第二,AlexNet将sigmoid激活函数改成了更加简单的ReLU激活函数。
第三,AlexNet通过丢弃法来控制全连接层的模型复杂度。而LeNet并没有使用丢弃法。
第四,AlexNet引入了大量的图像增广,如翻转、裁剪和颜色变化,从而进一步扩大数据集来缓解过拟合。

代码:

import time
import torch
from torch import nn, optim
import torchvision

import sys
sys.path.append("..") 
import dl_pytorch as d2l
device = torch.device('cuda' if torch.cuda.is_available() else 'cpu')

class AlexNet(nn.Module):
    def __init__(self):
        super(AlexNet, self).__init__()
        self.conv = nn.Sequential(
            nn.Conv2d(1, 96, 11, 4), # in_channels, out_channels, kernel_size, stride, padding
            nn.ReLU(),
            nn.MaxPool2d(3, 2), # kernel_size, stride
            # 减小卷积窗口,使用填充为2来使得输入与输出的高和宽一致,且增大输出通道数
            nn.Conv2d(96, 256, 5, 1, 2),
            nn.ReLU(),
            nn.MaxPool2d(3, 2),
            # 连续3个卷积层,且使用更小的卷积窗口。除了最后的卷积层外,进一步增大了输出通道数。
            # 前两个卷积层后不使用池化层来减小输入的高和宽
            nn.Conv2d(256, 384, 3, 1, 1),
            nn.ReLU(),
            nn.Conv2d(384, 384, 3, 1, 1),
            nn.ReLU(),
            nn.Conv2d(384, 256, 3, 1, 1),
            nn.ReLU(),
            nn.MaxPool2d(3, 2)
        )
         # 这里全连接层的输出个数比LeNet中的大数倍。使用丢弃层来缓解过拟合
        self.fc = nn.Sequential(
            nn.Linear(256*5*5, 4096),
            nn.ReLU(),
            nn.Dropout(0.5),
            nn.Linear(4096, 4096),
            nn.ReLU(),
            nn.Dropout(0.5),
            # 输出层。由于这里使用Fashion-MNIST,所以用类别数为10,而非论文中的1000
            nn.Linear(4096, 10),
        )

    def forward(self, img):
        feature = self.conv(img)
        output = self.fc(feature.view(img.shape[0], -1))
        return output

网络结构:

net = AlexNet()
print(net)

在这里插入图片描述
读取数据
用Fashion-MNIST数据集来演示AlexNet。读取数据的时将图像高和宽扩大到AlexNet使用的图像高和宽224。可以通过torchvision.transforms.Resize实例来实现。在ToTensor实例前使用Resize实例,然后使用Compose实例来将这两个变换串联以方便调用。

def load_data_fashion_mnist(batch_size, resize=None, root='~/Datasets/FashionMNIST'):
    """Download the fashion mnist dataset and then load into memory."""
    trans = []
    if resize:
        trans.append(torchvision.transforms.Resize(size=resize))
    trans.append(torchvision.transforms.ToTensor())

    transform = torchvision.transforms.Compose(trans)
    mnist_train = torchvision.datasets.FashionMNIST(root=root, train=True, download=True, transform=transform)
    mnist_test = torchvision.datasets.FashionMNIST(root=root, train=False, download=True, transform=transform)

    train_iter = torch.utils.data.DataLoader(mnist_train, batch_size=batch_size, shuffle=True, num_workers=4)
    test_iter = torch.utils.data.DataLoader(mnist_test, batch_size=batch_size, shuffle=False, num_workers=4)

    return train_iter, test_iter

batch_size = 128
# 如出现“out of memory”的报错信息,可减小batch_size或resize
train_iter, test_iter = load_data_fashion_mnist(batch_size, resize=224)

训练:

lr, num_epochs = 0.001, 5
optimizer = torch.optim.Adam(net.parameters(), lr=lr)
d2l.train_ch5(net, train_iter, test_iter, batch_size, optimizer, device, num_epochs)

最好在GPU上,CPU太长时间了(不要问我为啥知道)
在这里插入图片描述

以上是关于深度学习笔记-AlexNet的主要内容,如果未能解决你的问题,请参考以下文章

CV开山之作:《AlexNet》深度学习图像分类经典论文总结学习笔记(原文+总结)

深度学习入门笔记(二十):经典神经网络(LeNet-5AlexNet和VGGNet)

「深度学习一遍过」必修20:基于AlexNet的MNIST手写数字识别

「深度学习一遍过」必修20:基于AlexNet的MNIST手写数字识别

「深度学习一遍过」必修9:解读卷积神经网络 AlexNet

深度学习笔记-VGG