Tensorflow+kerasKeras API三种搭建神经网络的方式及以mnist举例实现

Posted Better Bench

tags:

篇首语:本文由小常识网(cha138.com)小编为大家整理,主要介绍了Tensorflow+kerasKeras API三种搭建神经网络的方式及以mnist举例实现相关的知识,希望对你有一定的参考价值。

1 第一种:Sequential

(1)简介
序列模型,官网介绍
代码参考:https://github.com/eriklindernoren/Keras-GAN/blob/master/gan/gan.py
理论参考:https://zhuanlan.zhihu.com/p/113385350
Keras Sequential API是实现Keras模型最简单的方式,就行它的名字所形容的一样,它将按照序列的方式实现模型,模型中的各个层就像一个队列一样排列起来组成一个完整的模型。但是Keras Sequential API有一定局限性,它不能创建以下模型结构:
• 共享层
• 模型分支
• 多个输入分支
• 多个输出分支
(2)举例实现

import sys
reload(sys)
sys.setdefaultencoding('utf-8')
###导入keras相关卷积模块,包含Dropout、Conv2D和MaxPoling2D
import numpy as np
from keras.datasets import mnist
import keras
import gc
import time
from keras.models import Sequential, Model
from keras.layers import Input, Dense, Dropout, Flatten
from keras.layers.convolutional import Conv2D, MaxPooling2D
time1 = time.time()
######读入数据
(X_train, y_train), (X_test, y_test) = mnist.load_data()
##看一下数据集大小
# print(X_train[0].shape)
# print(y_train[0])
##把训练集中的手写黑白字体变成标准的四维张量形式(样本数量,长,宽,1),并把像素值变成浮点格式。
X_train = X_train.reshape(X_train.shape[0],28,28,1).astype('float32') 
X_test = X_test.reshape(X_test.shape[0],28,28,1).astype('float32')
####归一化:由于每个像素值都是介于0-255,所以这里统一除以255,把像素值控制在0~1范围。
X_train /= 255 
X_test /= 255
##由于输入层需要10个节点,所以最好把目标数字0-9做成one Hot编码的形式。
def tran_y(y): 
    y_ohe = np.zeros(10) 
    y_ohe[y] = 1 
    return y_ohe
########把标签用one Hot编码重新表示一下
y_train_ohe = np.array([tran_y(y_train[i]) for i in range(len(y_train))]) 
y_test_ohe = np.array([tran_y(y_test[i]) for i in range(len(y_test))])
y_train_ohe = y_train_ohe.astype('float32')
y_test_ohe = y_test_ohe.astype('float32')
###接着搭建卷积神经网络
model = Sequential() 
###添加1层卷积层,构造64个过滤器,每个过滤器覆盖范围是3*3*1,过滤器挪动步长为1,图像四周补一圈0,并用relu 进行非线性变换
model.add(Conv2D(filters = 64, kernel_size = (3, 3), strides = (1, 1), padding = 'same', activation = 'relu',
          input_shape = (28,28,1)))
###添加1层Max pooling,在2*2的格子中取最大值
model.add(MaxPooling2D(pool_size = (2, 2)))
##设立Dropout层,将dropout的概率设为0.5。也可以尝试用0.2,0.3这些常用的值
model.add(Dropout(0.5))
##重复构造,搭建神经网络
model.add(Conv2D(128, kernel_size = (3, 3), strides = (1, 1), padding = 'same', activation = 'relu')) 
model.add(MaxPooling2D(pool_size = (2, 2))) 
model.add(Dropout(0.5)) 
model.add(Conv2D(256, kernel_size = (3, 3), strides = (1, 1), padding = 'same', activation = 'relu')) 
model.add(MaxPooling2D(pool_size = (2, 2))) 
model.add(Dropout(0.5))
###把当前层节点展平
model.add(Flatten())
######构造全连接神经网络层(3层)
model.add(Dense(128, activation = 'relu')) 
model.add(Dense(64, activation = 'relu')) 
model.add(Dense(32, activation = 'relu')) 
model.add(Dense(10, activation = 'softmax'))
#定义损失函数,一般来说分类问题的损失函数都选择采用交叉熵(Crossentropy)
# 我们可以定制各种选项,比如下面就定制了优化器选项。
adamoptimizer = keras.optimizers.Adam(lr = 1e-4)
model.compile(loss = 'categorical_crossentropy', 
              optimizer = adamoptimizer, metrics = ['accuracy'])
######放入批量样本,进行训练
model.fit(X_train, y_train_ohe, validation_data = (X_test, y_test_ohe), 
          epochs = 20, batch_size = 128)
#######在测试集上评价模型精确度
scores=model.evaluate(X_test,y_test_ohe,verbose=0)
#####打印精确度
print scores
time2 = time.time()
print u'ok,结束!'
print u'总共耗时:' + str(time2 - time1) + 's'

2 第二种:函数式API

(1)简介
参考:https://www.tensorflow.org/guide/keras/functional?hl=zh-cn
相比Sequential API,Functional API是我们实现模型更加常用的方式。Functional API更加灵活。使用Functional API,我们可以创建出更加复杂的模型:
• 在模型中设置多个输入或多个输出
• 在模型中定义分支结构
• 在模型中使用共享层
• 在模型中使用循环结构
(2)举例实现

def build_model():
    inputs = keras.Input(shape=(784,))
    x = layers.Dense(64, activation="relu")(inputs)
    x = layers.Dense(64, activation="relu")(x)
    outputs = layers.Dense(10)(x)
    model = keras.Model(inputs=inputs, outputs=outputs, name="mnist_model")
    (x_train, y_train), (x_test, y_test) = keras.datasets.mnist.load_data()
    x_train = x_train.reshape(60000, 784).astype("float32") / 255
    x_test = x_test.reshape(10000, 784).astype("float32") / 255
    model.compile(
        loss=keras.losses.SparseCategoricalCrossentropy(from_logits=True),
        optimizer=keras.optimizers.RMSprop(),
        metrics=["accuracy"],
    )
    return model
    
(X_train, y_train), (X_test, y_test) = mnist.load_data()
##把训练集中的手写黑白字体变成标准的四维张量形式(样本数量,长,宽,1),并把像素值变成浮点格式。
X_train = X_train.reshape(X_train.shape[0],28,28,1).astype('float32') 
X_test = X_test.reshape(X_test.shape[0],28,28,1).astype('float32')
####归一化:由于每个像素值都是介于0-255,所以这里统一除以255,把像素值控制在0~1范围。
X_train /= 255 
X_test /= 255
model = build_model()
history = model.fit(x_train, y_train, batch_size=64, epochs=2, validation_split=0.2)
test_scores = model.evaluate(x_test, y_test, verbose=2)
print("Test loss:", test_scores[0])
print("Test accuracy:", test_scores[1])

3 第三种:class

(1)简介
封装成子类
代码参考:https://zhuanlan.zhihu.com/p/58825020
Model subclassing顾名思义就是继承Model类。这有点类似于面向对象编程,实际上Keras中的所有模型都继承了Model类。使用这种方式我们可以完全按照我们的意愿编写我们的模型,我么可以在网络中使用我们自定义的层,自定义的损失函数,自定义的激活函数等等。
(2)举例实现

class MyModel(tf.keras.Model):
    def __init__(self, num_classes=10):
        super(MyModel, self).__init__(name='my_model')
        self.num_classes = num_classes
        self.layer1 = layers.Dense(32, activation='relu')
        self.layer2 = layers.Dense(num_classes, activation='softmax')
    def call(self, inputs):
        h1 = self.layer1(inputs)
        out = self.layer2(h1)
        return out
    def compute_output_shape(self, input_shape):
        shape = tf.TensorShape(input_shape).as_list()
        shape[-1] = self.num_classes
        return tf.TensorShape(shape)
(X_train, y_train), (X_test, y_test) = mnist.load_data()
##把训练集中的手写黑白字体变成标准的四维张量形式(样本数量,长,宽,1),并把像素值变成浮点格式。
X_train = X_train.reshape(X_train.shape[0],28,28,1).astype('float32') 
X_test = X_test.reshape(X_test.shape[0],28,28,1).astype('float32')
####归一化:由于每个像素值都是介于0-255,所以这里统一除以255,把像素值控制在0~1范围。
X_train /= 255 
X_test /= 255
model = MyModel(num_classes=10)
model.compile(optimizer=tf.keras.optimizers.RMSprop(0.001),
             loss=tf.keras.losses.categorical_crossentropy,
             metrics=['accuracy'])
model.fit(train_x, train_y, batch_size=16, epochs=5)

以上是关于Tensorflow+kerasKeras API三种搭建神经网络的方式及以mnist举例实现的主要内容,如果未能解决你的问题,请参考以下文章

Tensorflow+kerasKeras API三种搭建神经网络的方式及以mnist举例实现

Tensorflow+kerasKeras API三种搭建神经网络的方式及以mnist举例实现

Tensorflow+kerasKeras 用Class类封装的模型如何调试call子函数的模型内部变量

Tensorflow+kerasKeras 用Class类封装的模型如何调试call子函数的模型内部变量

Tensorflow+Keraskeras实现条件生成对抗网络DCGAN--以Minis和fashion_mnist数据集为例

Tensorflow+Keraskeras实现条件生成对抗网络DCGAN--以Minis和fashion_mnist数据集为例