《黑马程序员》C++核心编程

Posted 生命是有光的

tags:

篇首语:本文由小常识网(cha138.com)小编为大家整理,主要介绍了《黑马程序员》C++核心编程相关的知识,希望对你有一定的参考价值。

C++核心编程

0.写在前面

  1. 本篇笔记视频讲解地址:https://www.bilibili.com/video/BV1et411b73Z?p=1
  2. 笔记配合视频效果更好
  3. 外链图片上传失败已经解决,手动校正,如有错误和遗漏,可私信与评论进行指正,看到了会及时更改
  4. 与各位共勉
  5. 用来复习回顾使用

本阶段主要针对C++面向对象编程技术做详细讲解,探讨C++中的核心和精髓。

1 内存分区模型

C++程序在执行时,将内存大方向划分为4个区域

  • 代码区:存放函数体的二进制代码,由操作系统进行管理的
  • 全局区:存放全局变量和静态变量以及常量
  • 栈区:由编译器自动分配释放, 存放函数的参数值,局部变量等
  • 堆区:由程序员分配和释放,若程序员不释放,程序结束时由操作系统回收

内存四区意义:

不同区域存放的数据,赋予不同的生命周期, 给我们更大的灵活编程

1.1 程序运行前

​ 在程序编译后,生成了exe可执行程序,未执行该程序前分为两个区域

代码区:

​ 存放 CPU 执行的机器指令

​ 代码区是共享的,共享的目的是对于频繁被执行的程序,只需要在内存中有一份代码即可

​ 代码区是只读的,使其只读的原因是防止程序意外地修改了它的指令

全局区:

​ 全局变量和静态变量存放在此.

​ 全局区还包含了常量区, 字符串常量和其他常量也存放在此.

该区域的数据在程序结束后由操作系统释放.

示例:

//全局变量
int g_a = 10;
int g_b = 10;

//全局常量
const int c_g_a = 10;
const int c_g_b = 10;

int main() {

	//局部变量
	int a = 10;
	int b = 10;

	//打印地址
	cout << "局部变量a地址为: " << (int)&a << endl;
	cout << "局部变量b地址为: " << (int)&b << endl;

	cout << "全局变量g_a地址为: " <<  (int)&g_a << endl;
	cout << "全局变量g_b地址为: " <<  (int)&g_b << endl;

	//静态变量
	static int s_a = 10;
	static int s_b = 10;

	cout << "静态变量s_a地址为: " << (int)&s_a << endl;
	cout << "静态变量s_b地址为: " << (int)&s_b << endl;

	cout << "字符串常量地址为: " << (int)&"hello world" << endl;
	cout << "字符串常量地址为: " << (int)&"hello world1" << endl;

	cout << "全局常量c_g_a地址为: " << (int)&c_g_a << endl;
	cout << "全局常量c_g_b地址为: " << (int)&c_g_b << endl;

	const int c_l_a = 10;
	const int c_l_b = 10;
	cout << "局部常量c_l_a地址为: " << (int)&c_l_a << endl;
	cout << "局部常量c_l_b地址为: " << (int)&c_l_b << endl;

	system("pause");

	return 0;
}

打印结果:

在这里插入图片描述

总结:

  • C++中在程序运行前分为全局区和代码区
  • 代码区特点是共享和只读
  • 全局区中存放全局变量、静态变量、常量
  • 常量区中存放 const修饰的全局常量 和 字符串常量

1.2 程序运行后

栈区:

​ 由编译器自动分配释放, 存放函数的参数值,局部变量等

​ 注意事项:不要返回局部变量的地址,栈区开辟的数据由编译器自动释放

示例:

int * func()
{
	int a = 10;
	return &a;
}

int main() {

	int *p = func();

	cout << *p << endl;
	cout << *p << endl;

	system("pause");

	return 0;
}

堆区:

​ 由程序员分配释放,若程序员不释放,程序结束时由操作系统回收

​ 在C++中主要利用new在堆区开辟内存

示例:

int* func()
{
	int* a = new int(10);
	return a;
}

int main() {

	int *p = func();

	cout << *p << endl;
	cout << *p << endl;
    
	system("pause");

	return 0;
}

总结:

堆区数据由程序员管理开辟和释放

堆区数据利用new关键字进行开辟内存

1.3 new操作符

​ C++中利用new操作符在堆区开辟数据

​ 堆区开辟的数据,由程序员手动开辟,手动释放,释放利用操作符 delete

​ 语法:new 数据类型

​ 利用new创建的数据,会返回该数据对应的类型的指针

示例1: 基本语法

int* func()
{
    // 在堆区创建整型数据
    // new 返回的是该数据类型的指针
	int* a = new int(10);
	return a;
}

int main() {

	int *p = func();

	cout << *p << endl;
	cout << *p << endl;

	//利用delete释放堆区数据
	delete p;

	//cout << *p << endl; //报错,释放的空间不可访问

	system("pause");

	return 0;
}

示例2:开辟数组

//堆区开辟数组
int main() {

	int* arr = new int[10];

	for (int i = 0; i < 10; i++)
	{
		arr[i] = i + 100;
	}

	for (int i = 0; i < 10; i++)
	{
		cout << arr[i] << endl;
	}
	//释放数组 delete 后加 []
	delete[] arr;

	system("pause");

	return 0;
}

2 引用

2.1 引用的基本使用

**作用: **给变量起别名

语法: 数据类型 &别名 = 原名

示例:

int main() {

	int a = 10;
	int &b = a;

	cout << "a = " << a << endl;
	cout << "b = " << b << endl;
    // 10
    // 10

	b = 100;

	cout << "a = " << a << endl;
	cout << "b = " << b << endl;
    // 100
    // 100

	system("pause");

	return 0;
}

2.2 引用注意事项

  • 引用必须初始化
  • 引用在初始化后,不可以改变

示例:

int main() {

	int a = 10;
	int b = 20;
	//int &c; //错误,引用必须初始化
	int &c = a; //一旦初始化后,就不可以更改
	c = b; //这是赋值操作,不是更改引用

	cout << "a = " << a << endl;
	cout << "b = " << b << endl;
	cout << "c = " << c << endl;
	// 20
    // 20
    // 20
	system("pause");

	return 0;
}

2.3 引用做函数参数

作用:函数传参时,可以利用引用的技术让形参修饰实参

优点:可以简化指针修改实参

示例:

//1. 值传递
void mySwap01(int a, int b) {
	int temp = a;
	a = b;
	b = temp;
}

//2. 地址传递
void mySwap02(int* a, int* b) {
	int temp = *a;
	*a = *b;
	*b = temp;
}
//参数:把地址传进去,用指针接收

//3. 引用传递
void mySwap03(int& a, int& b) {
	int temp = a;
	a = b;
	b = temp;
}
//参数:别名,下面的a是上面的a的别名,用别名操作修改可原名操作修改是一样的
int main() {

	int a = 10;
	int b = 20;
    // 值传递,形参不会修饰实参
	mySwap01(a, b);
	cout << "a:" << a << " b:" << b << endl;
    // a:10 b:20

    // 地址传递,形参会修饰实参
	mySwap02(&a, &b);
	cout << "a:" << a << " b:" << b << endl;
    // a:20 b:10

    // 引用传递,形参会修饰实参
	mySwap03(a, b);
	cout << "a:" << a << " b:" << b << endl;
    // a:10 b:20

	system("pause");

	return 0;
}

总结:通过引用参数产生的效果同按地址传递是一样的。引用的语法更清楚简单

2.4 引用做函数返回值

作用:引用是可以作为函数的返回值存在的

注意:不要返回局部变量引用

用法:函数调用作为左值

示例:

//返回局部变量引用
//数据类型后加&,相当于用引用的方式返回 
int& test01() {                                   
	int a = 10; //局部变量存放在栈区
	return a;
}

//返回静态变量引用
int& test02() {
    // 静态变量存放在全局区,全局区上的数据在程序结束后系统释放
	static int a = 20;
	return a;
}

int main() {

	//不能返回局部变量的引用
    //因为局部变量操作完会自动释放
	int& ref = test01();
	cout << "ref = " << ref << endl;
	cout << "ref = " << ref << endl;
    // 第一次结果正确,因为编译器做了保留
    // 第二次结果错误,因为a的内存已经释放

	//如果函数做左值,那么必须返回引用
	int& ref2 = test02();
	cout << "ref2 = " << ref2 << endl;
	cout << "ref2 = " << ref2 << endl;
    // 20
    // 20

	test02() = 1000;
    //函数调用在等号的左边存在:函数调用作为左值

	cout << "ref2 = " << ref2 << endl;
	cout << "ref2 = " << ref2 << endl;
    // 1000
    // 1000

	system("pause");

	return 0;
}

2.5 引用的本质

本质:引用的本质在c++内部实现是一个指针常量.

讲解示例:

//发现是引用,转换为 int* const ref = &a;
void func(int& ref){
	ref = 100; // ref是引用,转换为*ref = 100
}
int main(){
	int a = 10;
    
    //自动转换为 int* const ref = &a; 指针常量是指针指向不可改,也说明为什么引用不可更改
	int& ref = a; 
	ref = 20; //内部发现ref是引用,自动帮我们转换为: *ref = 20;
    
	cout << "a:" << a << endl;
	cout << "ref:" << ref << endl;
    
	func(a);
	return 0;
}

结论:C++推荐用引用技术,因为语法方便,引用本质是指针常量,但是所有的指针操作编译器都帮我们做了

2.6 常量引用

作用:常量引用主要用来修饰形参,防止误操作

在函数形参列表中,可以加const修饰形参,防止形参改变实参

示例:

//引用使用的场景,通常用来修饰形参
void showValue(const int& v) {  
    //const加入就不能修改形参
	//v += 10;
	cout << v << endl;
}

int main() {

	//int& ref = 10;  引用本身需要一个合法的内存空间,因此这行错误
	//加入const就可以了,编译器优化代码,int temp = 10; const int& ref = temp;
	const int& ref = 10;

	//ref = 100;  //加入const后不可以修改变量
	cout << ref << endl;

	//函数中利用常量引用防止误操作修改实参
	int a = 10;
	showValue(a);

	system("pause");

	return 0;
}

3 函数提高

3.1 函数默认参数

在C++中,函数的形参列表中的形参是可以有默认值的。

语法:返回值类型 函数名 (参数= 默认值){}

示例:

int func(int a, int b = 10, int c = 10) {
	return a + b + c;
}

//1. 如果某个位置参数有默认值,那么从这个位置往后,从左向右,必须都要有默认值
//2. 如果函数声明有默认值,函数实现的时候就不能有默认参数
int func2(int a = 10, int b = 10);
int func2(int a, int b) {
	return a + b;
}

int main() {

	cout << "ret = " << func(20, 20) << endl;
	cout << "ret = " << func(100) << endl;

	system("pause");

	return 0;
}

3.2 函数占位参数

C++中函数的形参列表里可以有占位参数,用来做占位,调用函数时必须填补该位置

语法: 返回值类型 函数名 (数据类型){}

在现阶段函数的占位参数存在意义不大,但是后面的课程中会用到该技术

示例:

//函数占位参数 ,占位参数也可以有默认参数
void func(int a, int) {
	cout << "this is func" << endl;
}

int main() {

	func(10,10); //占位参数必须填补

	system("pause");

	return 0;
}

3.3 函数重载

3.3.1 函数重载概述

作用:函数名可以相同,提高复用性

函数重载满足条件:

  • 同一个作用域下
  • 函数名称相同
  • 函数参数类型不同 或者 个数不同 或者 顺序不同

注意: 函数的返回值不可以作为函数重载的条件

示例:

//函数重载需要函数都在同一个作用域下
void func()
{
	cout << "func 的调用!" << endl;
}
void func(int a)
{
	cout << "func (int a) 的调用!" << endl;
}
void func(double a)
{
	cout << "func (double a)的调用!" << endl;
}
void func(int a ,double b)
{
	cout << "func (int a ,double b) 的调用!" << endl;
}
void func(double a ,int b)
{
	cout << "func (double a ,int b)的调用!" << endl;
}

//函数返回值不可以作为函数重载条件
//int func(double a, int b)
//{
//	cout << "func (double a ,int b)的调用!" << endl;
//}


int main() {

	func();
	func(10);
	func(3.14);
	func(10,3.14);
	func(3.14 , 10);
	
	system("pause");

	return 0;
}

3.3.2 函数重载注意事项

  • 引用作为重载条件
  • 函数重载碰到函数默认参数

示例:

//函数重载注意事项
//1、引用作为重载条件

void func(int &a)
{
	cout << "func (int &a) 调用 " << endl;
}

void func(const int &a)
{
	cout << "func (const int &a) 调用 " << endl;
}


//2、函数重载碰到函数默认参数

void func2(int a, int b = 10)
{
	cout << "func2(int a, int b = 10) 调用" << endl;
}

void func2(int a)
{
	cout << "func2(int a) 调用" << endl;
}

int main() {
	
	int a = 10;
	func(a); //调用无const
	func(10);//调用有const


	//func2(10); //碰到默认参数产生歧义,需要避免

	system("pause");

	return 0;
}

4 类和对象

C++面向对象的三大特性为:封装、继承、多态

C++认为万事万物都皆为对象,对象上有其属性和行为

例如:

​ 人可以作为对象,属性有姓名、年龄、身高、体重…,行为有走、跑、跳、吃饭、唱歌…

​ 车也可以作为对象,属性有轮胎、方向盘、车灯…,行为有载人、放音乐、放空调…

​ 具有相同性质的对象,我们可以抽象称为,人属于人类,车属于车类

4.1 封装

4.1.1 封装的意义

封装是C++面向对象三大特性之一

封装的意义:

  • 将属性和行为作为一个整体,表现生活中的事物
  • 将属性和行为加以权限控制

封装意义一:

​ 在设计类的时候,属性和行为写在一起,表现事物

语法: class 类名{ 访问权限: 属性 / 行为 };

示例1:设计一个圆类,求圆的周长

示例代码:

//圆周率
const double PI = 3.14;

//1、封装的意义
//将属性和行为作为一个整体,用来表现生活中的事物

//封装一个圆类,求圆的周长
//class代表设计一个类,后面跟着的是类名
class Circle
{
public:  //访问权限  公共的权限

	//属性
	int m_r;//半径

	//行为
	//获取到圆的周长
	double calculateZC()
	{
		//2 * pi  * r
		//获取圆的周长
		return  2 * PI * m_r;
	}
};

int main() {

	//通过圆类,创建圆的对象
	// c1就是一个具体的圆
	Circle c1;
	c1.m_r = 10; //给圆对象的半径 进行赋值操作

	//2 * pi * 10 = = 62.8
	cout << "圆的周长为: " << c1.calculateZC() << endl;

	system("pause");

	return 0;
}

示例2:设计一个学生类,属性有姓名和学号,可以给姓名和学号赋值,可以显示学生的姓名和学号

示例2代码:

//学生类
class Student {
public:
	void setName(string name) {
		m_name = name;
	}
	void setID(int id) {
		m_id = id;
	}

	void showStudent() {
		cout << "name:" << m_name << " ID:" << m_id << endl;
	}
// 属性
public:
	string m_name;
	int m_id;
};

int main() {

	Student stu;
	stu.setName("德玛西亚");
	stu.setID(250);
	stu.showStudent();

	system("pause");

	return 0;
}

封装意义二:

类在设计时,可以把属性和行为放在不同的权限下,加以控制

访问权限有三种:

  1. public 公共权限
  2. protected 保护权限
  3. private 私有权限

示例:

//三种权限
//公共权限  public     类内可以访问  类外可以访问
//保护权限  protected  类内可以访问  类外不可以访问
//私有权限  private    类内可以访问  类外不可以访问

class Person
{
	//姓名  公共权限
public:
	string m_Name;

	//汽车  保护权限
protected:
	string m_Car;

	//银行卡密码  私有权限
private:
	int m_Password;

public:
	void func()
	{
		m_Name = "张三";
		m_Car = "拖拉机";
		m_Password = 123456;
	}
};

int main() {

	Person p;
	p.m_Name = "李四";
	//p.m_Car = "奔驰";  //保护权限类外访问不到
	//p.m_Password = 123; //私有权限类外访问不到

	system("pause");

	return 0;
}

4.1.2 struct和class区别

在C++中 struct和class唯一的区别就在于 默认的访问权限不同

区别:

  • struct 默认权限为公共
  • class 默认权限为私有
class C1
{
	int  m_A; //默认是私有权限
};

struct C2
{
	int m_A;  //默认是公共权限
};

int main() {

	C1 c1;
	c1.m_A = 10; //错误,访问权限是私有

	C2 c2;
	c2.m_A = 10; //正确,访问权限是公共

	system("pause");

	return 0;
}

4.1.3 成员属性设置为私有

优点1:将所有成员属性设置为私有,可以自己控制读写权限

**优点2:**对于写权限,我们可以检测数据的有效性

示例:

class Person {
public:

	//姓名设置可读可写
	void setName(string name) {
		m_Name = name;
	}
	string getName()
	{
		return m_Name;
	}


	//获取年龄 
	int getAge() {
		return m_Age;
	}
	//设置年龄
	void setAge(int age) {
		if (age < 0 || age > 150) {
			cout << "你个老妖精!" << endl;
			return;
		}
		m_Age = age;
	}

	//情人设置为只写
	void setLover(string lover) {
		m_Lover = lover;
	}
// 属性
private:
	string m_Name; //可读可写  姓名
	
	int m_Age; //只读  年龄

	string m_Lover; //只写  情人
};


int main() {

	Person p;
	//姓名设置
	p.setName("张三");
	cout << "姓名: " << p.getName() << endl;

	//年龄设置
	p.setAge(50);
	cout << "年龄: " << p.getAge() << endl;

	//情人设置
	p.setLover("苍井");
	//cout << "情人: " << p.m_Lover << endl;  //只写属性,不可以读取

	system("pause");

	return 0;
}

练习案例1:设计立方体类

设计立方体类(Cube)

求出立方体的面积和体积

分别用全局函数和成员函数判断两个立方体是否相等。

在这里插入图片描述

#include<iostream>
#include<string>
using namespace std;
//立方体设计
//1.创建立方体类
//2.设计属性
//3.设计行为,获取立方体面积和体积
//4.分别利用全局函数和成员函数,判断两个立方体是否相等
//5.全局函数在main函数外,成员函数在class里面

class Cube     
{
public:
    //读和写
	//设置长   
	void  setL(int l)
	{
		m_L = l;
	}
	//获取长
	int getL()
	{
		return m_L;
	}
	//设置宽
	void setW(int w)
	{
		m_W = w;
	}
	//获取宽
	int getW()
	{
		return m_W;
	}

	//设置高
	void setH(int h)
	{
		m_H = h;
	}
	//获取高
	int getH()
	{
		return m_H;
	}
	//获取立方体面积      calculate-计算
	int  calculateS()
	{
		return 2 * m_L * m_W + 2 * m_L * m_H + 2*m_W * m_H;
	}
	//获取立方体体积
	int calculateV()
	{
		return m_L * m_W * m_H;
	}
	//利用成员函数判断两个立方体是否相等
	bool isSameByClass(Cube &c)
	{
		if (m_L == c.getL() && m_W == c.getW() && m_H == c.getH())
		{
			return true;
		}
		return false;

	}


	
private:         //属性一般设置私有,外部设置接口即可,在访问权限下设计接口
	//属性
	int m_L;  //长  lengh
	int m_W;  //宽  weigh
	int m_H;  //高  high
	//行为


};




//利用全局函数判断两个立方体是否相等
bool isSame(Cube &c1,Cube &c2)    //用引用的方式传递
{
	if (c1.getL() == c2.getL() && c1.getW() == c2.getW() && c1.getH() == c2.getH())
	{
		return true;
	}
	return false;
}



int main()
{
	//创建立方体对象
	Cube c1;
	c1.setL(10);
	c1.setW(10);
	c1.setH(10);

	cout << "c1的面积为:" << c1.calculateS() << endl;
	cout << "c1的体积为:" << c1.calculateV() << endl;

	//创建第二个立方体
	Cube c2;
	c2.setL(10);
	c2.setW(10);
	c2.setH(10);
	//利用全局函数判断
	bool ret=isSame(c1, c2);      //isSame是全局函数
	if (ret)       //默认ret为真,即ret=ture
	{
		cout << "c1和c2是相等的!" << endl;
	}
	else
	{
		cout << "c1和c2是不相等的!" << endl;
	}

	//利用成员函数判断
	ret = c1.isSameByClass(c2);
	if (ret)       //默认ret为真,即ret=ture
	{
		cout << "成员函数判断:c1和c2是相等的!" << endl;
	}
	else
	{
		cout << "成员函数判断:c1和c2是不相等的!" << endl;
	}



	system("pause");
	return 0;
}

练习案例2:点和圆的关系

设计一个圆形类(Circle),和一个点类(Point),计算点和圆的关系。

在这里插入图片描述

#include<iostream>
using namespace std;

//点类
class Point
{
public:
	//设置x坐标
	void setX(int x)
	{
		m_X = x;
	}
	//获取x坐标
	int getX()
	{
		return m_X;
	}
	//设置y坐标
	void setY(int y)
	{
		m_Y = y;
	}
	//获取y坐标
	int getY()
	{
		return m_Y;
	}
private:
	int m_X;  //x坐标
	int m_Y;  //y坐标



};




//圆类
class Circle
{
public:
	//设置半径
	void setR(int r)
	{
		m_r = r;
	}
	//获取半径
	int getR()
	{
		return m_r;
	}
	//设置圆心
	void setCenter(Point center)
	{
		m_Center = center;
	}
	//获取圆心
	Point getCenter()
	{
		return m_Center;
	}
	//属性
private:
	int m_r; //半径
	Point m_Center; //圆心
};
//判断点和圆的关系
//void  isInCircle(Circle& c, Point& p)
void isInCirle(Circle &c,Point &p)
{
	//计算两点之间的距离平方
	int distance =
		(c.getCenter().getX() - p.getX()) * (c.getCenter().getX() - p.getX()) + (c.getCenter().getY() - p.getY()) * (c.getCenter().getY() - p.getY());
	//计算半径的平方
	int rDistance =
		c.getR() * c.getR();

	//判断关系
	if (distance = rDistance)
	{
		cout << "点在圆上" << endl;
	}
	else
	{
		if (distance > rDistance)
		{
			cout << "点在圆外" << endl;
		}
		else
		{
			cout << "点在圆内" << endl;
		}
	}
}


int main()
{
	//创建圆
	Circle c;
	c.setR(10);
	Point center;
	center.setX(10);
	center.setY(0);
	c.setCenter(center);
	//创建点
	Point p;
	p.setX(10);
	p.setY(10);

	//判断关系
	isInCirle(c, p);





	system("pause");
	return 0;
}

4.2 对象的初始化和清理

  • 生活中我们买的电子产品都基本会有出厂设置,在某一天我们不用时候也会删除一些自己信息数据保证安全
  • C++中的面向对象来源于生活,每个对象也都会有初始设置以及 对象销毁前的清理数据的设置。

4.2.1 构造函数和析构函数

对象的初始化和清理也是两个非常重要的安全问题

​ 一个对象或者变量没有初始状态,对其使用后果是未知

​ 同样的使用完一个对象或变量,没有及时清理,也会造成一定的安全问题

c++利用了构造函数析构函数解决上述问题,这两个函数将会被编译器自动调用,完成对象初始化和清理工作。

对象的初始化和清理工作是编译器强制要我们做的事情,因此如果我们不提供构造和析构,编译器会提供

编译器提供的构造函数和析构函数是空实现。

  • 构造函数:主要作用在于创建对象时为对象的成员属性赋值,构造函数由编译器自动调用,无须手动调用。
  • 析构函数:主要作用在于对象销毁前系统自动调用,执行一些清理工作。

构造函数语法:类名(){}

  1. 构造函数,没有返回值也不写void
  2. 函数名称与类名相同
  3. 构造函数可以有参数,因此可以发生重载
  4. 程序在调用对象时候会自动调用构造函数,无须手动调用,而且只会调用一次

析构函数语法: ~类名(){}

  1. 析构函数,没有返回值也不写void
  2. 函数名称与类名相同,在名称前加上符号~
  3. 析构函数不可以有参数,因此不可以发生重载
  4. 程序在对象销毁前会自动调用析构,无须手动调用,而且只会调用一次
class Person
{
public:
	//构造函数
	Person()
	{
		cout << "Person的构造函数调用" << endl;
	}
	//析构函数
	~Person()
	{
		cout << "Person的析构函数调用" << endl;
	}

};

void test01()
{
	Person p; //在栈上的数据,test01()执行完毕后,释放这个对象
}

int main() {
	
	test01();

	system("pause");

	return 0;
}

4.2.2 构造函数的分类及调用

两种分类方式:

​ 按参数分为: 有参构造和无参构造

​ 按类型分为: 普通构造和拷贝构造

三种调用方式:

​ 括号法

​ 显示法

​ 隐式转换法

示例:

//1、构造函数分类
// 按照参数分类分为 有参和无参构造   无参又称为默认构造函数
// 按照类型分类分为 普通构造和拷贝构造

class Person {
public:
	//无参(默认)构造函数
	Person() {
		cout << "无参构造函数!" << endl;
	}
	//有参构造函数
	Person(int a) {
		age = a;
		cout << "有参构造函数!" << endl;
	}
	//拷贝构造函数
	Person(const Person& p) {
        // 将传入的人身上的所有属性,拷贝到我身上
		age = p.age;
		cout << "拷贝构造函数!" << endl;
	}
	//析构函数
	~Person() {
		cout << "析构函数!" << endl;
	}
public:
	int age;
};

//2、构造函数的调用
//调用无参构造函数
void test01() {
	Person p; //调用无参构造函数
}

//调用有参的构造函数
void test02() {

	//2.1  括号法,常用
	Person p1(10);
	//注意1:调用无参构造函数不能加括号,如果加了编译器认为这是一个函数声明
	//Person p2();

	//2.2 显式法
	Person p2 = Person(10); 
	Person p3 = Person(p2);
	//Person(10)单独写就是匿名对象  当前行结束之后,马上析构

	//2.3 隐式转换法
	Person p4 = 10; // Person p4 = Person(10); 
	Person p5 = p4; // Person p5 = Person(p4); 

	//注意2:不能利用 拷贝构造函数 初始化匿名对象 编译器认为是对象声明
	//Person p5(p4);
}

int main() {

	test01();
	//test02();

	system("pause");

	return 0;
}

4.2.3 拷贝构造函数调用时机

C++中拷贝构造函数调用时机通常有三种情况

  • 使用一个已经创建完毕的对象来初始化一个新对象
  • 值传递的方式给函数参数传值
  • 以值方式返回局部对象

示例:

class Person {
public:
	Person() {
		cout << "无参构造函数!" << endl;
		mAge = 0;
	}
	Person(int age) {
		cout << "有参构造函数!" << endl;
		mAge = age;
	}
	Person(const Person& p) {
		cout << "拷贝构造函数!" << endl;
		mAge = p.mAge;
	}
	//析构函数在释放内存之前调用
	~Person() {
		cout << "析构函数!" << endl;
	}
public:
	int mAge;
};

//1. 使用一个已经创建完毕的对象来初始化一个新对象
void test01() {

	Person man(100); //p对象已经创建完毕
	Person newman(man); //调用拷贝构造函数
	Person newman2 = man; //拷贝构造

	//Person newman3;
	//newman3 = man; //不是调用拷贝构造函数,赋值操作
}

//2. 值传递的方式给函数参数传值
//相当于Person p1 = p;
void doWork(Person p1) {}
void test02() {
	Person p; //无参构造函数
	doWork(p);
}

//3. 以值方式返回局部对象
Person doWork2()
{
	Person p1;
	cout << (int *)&p1 << endl;
	return p1;
}

void test03()
{
	Person p = doWork2();
	cout << (int *)&p << endl;
}


int main() {

	//test01();
	//test02();
	test03();

	system("pause");

	return 0;
}

4.2.4 构造函数调用规则

默认情况下,c++编译器至少给一个类添加3个函数

1.默认构造函数(无参,函数体为空)

2.默认析构函数(无参,函数体为空)

3.默认拷贝构造函数,对属性进行值拷贝

构造函数调用规 则如下:

  • 如果用户定义有参构造函数,c++不在提供默认无参构造,但是会提供默认拷贝构造

  • 如果用户定义拷贝构造函数,c++不会再提供其他构造函数

示例:

class Person {
public:
	//无参(默认)构造函数
	Person() {
		cout << "无参构造函数!" << endl;
	}
	//有参构造函数
	Person(int a) {
		age = a;
		cout << "有参构造函数!" << endl;
	}
	//拷贝构造函数
	Person(const Person& p) {
		age = p.age;
		cout << "拷贝构造函数!" << endl;
	}
	//析构函数
	~Person() {
		cout << "析构函数!" << endl;
	}
public:
	int age;
};

void test01()
{
	Person p1(18);
	//如果不写拷贝构造,编译器会自动添加拷贝构造,并且做浅拷贝操作
	Person p2(p1);

	cout << "p2的年龄为: " << p2.age << endl;
}

void test02()
{
	//如果用户提供有参构造,编译器不会提供默认构造,会提供拷贝构造
	Person p1; //此时如果用户自己没有提供默认构造,会出错
	Person p2(10); //用户提供的有参
	Person p3(p2); //此时如果用户没有提供拷贝构造,编译器会提供

	//如果用户提供拷贝构造,编译器不会提供其他构造函数
	Person p4; //此时如果用户自己没有提供默认构造,会出错
	Person p5(10); //此时如果用户自己没有提供有参,会出错
	Person p6(p5); //用户自己提供拷贝构造
}

int main() {

	test01();

	system("pause");

	return 0;
}

4.2.5 深拷贝与浅拷贝

深浅拷贝是面试经典问题,也是常见的一个坑

浅拷贝:简单的赋值拷贝操作

深拷贝:在堆区重新申请空间,进行拷贝操作

示例:

class Person {
public:
	//无参(默认)构造函数
	Person() {
		cout << "无参构造函数!" << endl;
	}
	//有参构造函数
	Person(int age ,int height) {
		
		cout << "有参构造函数!" << endl;

		m_age = age;
		m_height = new int(height);
		
	}
	//拷贝构造函数  
	Person(const Person& p) {
		cout << "拷贝构造函数!" << endl;
		//如果不利用深拷贝在堆区创建新内存,会导致浅拷贝带来的重复释放堆区问题
		m_age = p.m_age;
		m_height = new int(*p.m_height);
		
	}

	//析构函数
	~Person() {
		cout << "析构函数!" << endl;
		if (m_height != NULL)
		{
			delete m_height;
		}
	}
public:
	int m_age;
	int* m_height;
};

void test01()
{
	Person p1(18, 180);

	Person p2(p1);

	cout << "p1的年龄: " << p1.m_age << " 身高: " << *p1.m_height << endl;

	cout << "p2的年龄: " << p2.m_age << " 身高: " << *p2.m_height << endl;
}

int main() {

	test01();

	system("pause");

	return 0;
}

总结:如果属性有在堆区开辟的,一定要自己提供拷贝构造函数,防止浅拷贝带来的问题

4.2.6 初始化列表

作用:

C++提供了初始化列表语法,用来初始化属性

语法:构造函数():属性1(值1),属性2(值2)... {}

示例:

class Person {
public:

	传统方式初始化
	//Person(int a, int b, int c) {
	//	m_A = a;
	//	m_B = b;
	//	m_C = c;
	//}

	//初始化列表方式初始化
	Person(int a, int b, int c) :m_A(a), m_B(b), m_C(c) {}
	void PrintPerson() {
		cout << "mA:" << m_A << endl;
		cout << "mB:" << m_B << endl;
		cout << "mC:" << m_C << endl;
	}
private:
	int m_A;
	int m_B;
	int m_C;
};

int main() {

	Person p(1, 2, 3);
	p.PrintPerson();


	system("pause");

	return 0;
}

4.2.7 类对象作为类成员

C++类中的成员可以是另一个类的对象,我们称该成员为 对象成员

例如:

class A {}
class B
{
    A a;
}

B类中有对象A作为成员,A为对象成员

那么当创建B对象时,A与B的构造和析构的顺序是谁先谁后?

示例:

class Phone
{
public:
	Phone(string name)
	{
		m_PhoneName = name;
		cout << "Phone构造" << endl;
	}

	~Phone()
	{
		cout << "Phone析构" << endl;
	}

	string m_PhoneName;

};


class Person
{
public:

	//初始化列表可以告诉编译器调用哪一个构造函数
	Person(string name, string pName) :m_Name(name), m_Phone(pName)
	{
		cout << "Person构造" << endl;
	}

	~Person()
	{
		cout << "Person析构" << endl;
	}

	void playGame()
	{
		cout << m_Name << " 使用" << m_Phone.m_PhoneName << " 牌手机! " << endl;
	}

	string m_Name;
	Phone m_Phone;

};
void test01()
{
	//当类中成员是其他类对象时,我们称该成员为 对象成员
	//构造的顺序是 :先调用对象成员的构造,再调用本类构造
	//析构顺序与构造相反
	Person p("张三" , "苹果X");
	p.playGame();

}


int main() {

	test01();

	system("pause");

	return 0;
}

4.2.8 静态成员

静态成员就是在成员变量和成员函数前加上关键字static,称为静态成员

静态成员分为:

  • 静态成员变量
    • 所有对象共享同一份数据
    • 在编译阶段分配内存
    • 类内声明,类外初始化
  • 静态成员函数
    • 所有对象共享同一个函数
    • 静态成员函数只能访问静态成员变量

示例1 :静态成员变量

class Person
{
	
public:

	static int m_A; //静态成员变量

	//静态成员变量特点:
	//1 在编译阶段分配内存
	//2 类内声明,类外初始化
	//3 所有对象共享同一份数据

private:
	static int m_B; //静态成员变量也是有访问权限的
};
int Person::m_A = 10;
int Person::m_B = 10;

void test01()
{
	//静态成员变量两种访问方式

	//1、通过对象
	Person p1;
	p1.m_A = 100;
	cout << "p1.m_A = " << p1.m_A << endl;

	Person p2;
	p2.m_A = 200;
	cout << "p1.m_A = " << p1.m_A << endl; //共享同一份数据
	cout << "p2.m_A = " << p2.m_A << endl;

	//2、通过类名
	cout << "m_A = " << Person::m_A << endl;


	//cout << "m_B = " << Person::m_B << endl; //私有权限访问不到
}

int main() {

	test01();

	system("pause");

	return 0;
}

**示例2:**静态成员函数

class Person
{

public:

	//静态成员函数特点:
	//1 程序共享一个函数
	//2 静态成员函数只能访问静态成员变量
	
	static void func()
	{
		cout << "func调用" << endl;
		m_A = 100;
		//m_B = 100; //错误,不可以访问非静态成员变量
	}

	static int m_A; //静态成员变量
	int m_B; // 
private:

	//静态成员函数也是有访问权限的
	static void func2()
	{
		cout << "func2调用" << endl;
	}
};
int Person::m_A = 10;


void test01()
{
	//静态成员变量两种访问方式

	//1、通过对象
	Person p1;
	p1.func();

	//2、通过类名
	Person::func();


	//Person::func2(); //私有权限访问不到
}

int main() {

	test01();

	system("pause");

	return 0;
}

4.3 C++对象模型和this指针

4.3.1 成员变量和成员函数分开存储

在C++中,类内的成员变量和成员函数分开存储

只有非静态成员变量才属于类的对象上

class Person {
public:
	Person() {
		mA = 0;
	}
	//非静态成员变量占对象空间
	int mA;
	//静态成员变量不占对象空间
	static int mB; 
	//函数也不占对象空间,所有函数共享一个函数实例
	void func() {
		cout << "mA:" << this->mA << endl;
	}
	//静态成员函数也不占对象空间
	static void sfunc() {
	}
};

int main() {

	cout << sizeof(Person) << endl;

	system("pause");

	return 0;
}

4.3.2 this指针概念

通过4.3.1我们知道在C++中成员变量和成员函数是分开存储的

每一个非静态成员函数只会诞生一份函数实例,也就是说多个同类型的对象会共用一块代码

那么问题是:这一块代码是如何区分那个对象调用自己的呢?

c++通过提供特殊的对象指针,this指针,解决上述问题。this指针指向被调用的成员函数所属的对象

this指针是隐含每一个非静态成员函数内的一种指针

this指针不需要定义,直接使用即可

this指针的用途:

  • 当形参和成员变量同名时,可用this指针来区分
  • 在类的非静态成员函数中返回对象本身,可使用return *this
class Person
{
public:

	Person(int age)
	{
		//1、当形参和成员变量同名时,可用this指针来区分
		this->age = age;
	}

	Person& PersonAddPerson(Person p)
	{
		this->age += p.age;
		//返回对象本身
		return *this;
	}

	int age;
};

void test01()
{
	Person p1(10);
	cout << "p1.age = " << p1.age << endl;

	Person p2(10);
	p2.PersonAddPerson(p1).PersonAddPerson(p1).PersonAddPerson(p1);
	cout << "p2.age = " << p2.age << endl;
}

int main() {

	test01();

	system("pause");

	return 0;
}

4.3.3 空指针访问成员函数

C++中空指针也是可以调用成员函数的,但是也要注意有没有用到this指针

如果用到this指针,需要加以判断保证代码的健壮性

示例:

//空指针访问成员函数
class Person {
public:

	void ShowClassName() {
		cout << "我是Person类!" << endl;
	}

	void ShowPerson() {
		if (this == NULL) {
			return;
		}
		cout << mAge << endl;
	}

public:
	int mAge;
};

void test01()
{
	Person * p = NULL;
	p->ShowClassName(); //空指针,可以调用成员函数
	p->ShowPerson();  //但是如果成员函数中用到了this指针,就不可以了
}

int main() {

	test01();

	system("pause");

	return 0;
}

4.3.4 const修饰成员函数

常函数:

  • 成员函数后加const后我们称为这个函数为常函数
  • 常函数内不可以修改成员属性
  • 成员属性声明时加关键字mutable后,在常函数中依然可以修改

常对象:

  • 声明对象前加const称该对象为常对象
  • 常对象只能调用常函数

示例:

class Person {
public:
	Person() {
		m_A = 0;
		m_B = 0;
	}

	//this指针的本质是一个指针常量,指针的指向不可修改
	//如果想让指针指向的值也不可以修改,需要声明常函数
	void ShowPerson() const {
		//const Type* const pointer;
		//this = NULL; //不能修改指针的指向 Person* const this;
		//this->mA = 100; //但是this指针指向的对象的数据是可以修改的

		//const修饰成员函数,表示指针指向的内存空间的数据不能修改,除了mutable修饰的变量
		this->m_B = 100;
	}

	void MyFunc() const {
		//mA = 10000;
	}

public:
	int m_A;
	mutable int m_B; //可修改 可变的
};


//const修饰对象  常对象
void test01() {

	const Person person; //常量对象  
	cout << person.m_A << endl;
	//person.mA = 100; //常对象不能修改成员变量的值,但是可以访问
	person.m_B = 100; //但是常对象可以修改mutable修饰成员变量

	//常对象访问成员函数
	person.MyFunc(); //常对象不能调用const的函数

}

int main() {

	test01();

	system("pause");

	return 0;
}

4.4 友元

生活中你的家有客厅(Public),有你的卧室(Private)

客厅所有来的客人都可以进去,但是你的卧室是私有的,也就是说只有你能进去

但是呢,你也可以允许你的好闺蜜好基友进去。

在程序里,有些私有属性 也想让类外特殊的一些函数或者类进行访问,就需要用到友元的技术

友元的目的就是让一个函数或者类 访问另一个类中私有成员

友元的关键字为 friend

友元的三种实现

  • 全局函数做友元
  • 类做友元
  • 成员函数做友元

4.4.1 全局函数做友元

class Building
{
	//告诉编译器 goodGay全局函数 是 Building类的好朋友,可以访问类中的私有内容
	friend void goodGay(Building * building);

public:

	Building()
	{
		this->m_SittingRoom = "客厅";
		this->m_BedRoom = "卧室";
	}


public:
	string m_SittingRoom; //客厅

private:
	string m_BedRoom; //卧室
};


void goodGay(Building * building)
{
	cout << "好基友正在访问: " << building->m_SittingRoom << endl;
	cout << "好基友正在访问: " << building->m_BedRoom << endl;
}


void test01()
{
	Building b;
	goodGay(&b);
}

int main(){

	test01();

	system("pause");
	return 0;
}

4.4.2 类做友元

class Building;
class goodGay
{
public:

	goodGay();
	void visit();

private:
	Building *building;
};


class Building
{
	//告诉编译器 goodGay类是Building类的好朋友,可以访问到Building类中私有内容
	friend class goodGay;

public:
	Building();

public:
	string m_SittingRoom; //客厅
private:
	string m_BedRoom;//卧室
};

Building::Building()
{
	this->m_SittingRoom = "客厅";
	this->m_BedRoom = "卧室";
}

goodGay::goodGay()
{
	building = new Building;
}

void goodGay::visit()
{
	cout << "好基友正在访问" << building->m_SittingRoom << endl;
	cout << "好基友正在访问" << building->m_BedRoom << endl;
}

void test01()
{
	goodGay gg;
	gg.visit();

}

int main(){

	test01();

	system("pause");
	return 0;
}

4.4.3 成员函数做友元


class Building;
class goodGay
{
public:

	goodGay();
	void visit(); //只让visit函数作为Building的好朋友,可以发访问Building中私有内容
	void visit2(); 

private:
	Building *building;
};


class Building
{
	//告诉编译器  goodGay类中的visit成员函数 是Building好朋友,可以访问私有内容
	friend void goodGay::visit();

public:
	Building();

public:
	string m_SittingRoom; //客厅
private:
	string m_BedRoom;//卧室
};

Building::Building()
{
	this->m_SittingRoom = "客厅";
	this->m_BedRoom = "卧室";
}

goodGay::goodGay()
{
	building = new Building;
}

void goodGay::visit()
{
	cout << "好基友正在访问" << building->m_SittingRoom << endl;
	cout << "好基友正在访问" << building->m_BedRoom << endl;
}

void goodGay::visit2()
{
	cout << "好基友正在访问" << building->m_SittingRoom << endl;
	//cout << "好基友正在访问" << building->m_BedRoom << endl;
}

void test01()
{
	goodGay  gg;
	gg.visit();

}

int main(){
    
	test01();

	system("pause");
	return 0;
}

4.5 运算符重载

运算符重载概念:对已有的运算符重新进行定义,赋予其另一种功能,以适应不同的数据类型

4.5.1 加号运算符重载

作用:实现两个自定义数据类型相加的运算

class Person {
public:
	Person() {};
	Person(int a, int b)
	{
		this->m_A = a;
		this->m_B = b;
	}
	//成员函数实现 + 号运算符重载
	Person operator+(const Person& p) {
		Person temp;
		temp.m_A = this->m_A + p.m_A;
		temp.m_B = this->m_B + p.m_B;
		return temp;
	}


public:
	int m_A;
	int m_B;
};

//全局函数实现 + 号运算符重载
//Person operator+(const Person& p1, const Person& p2) {
//	Person temp(0, 0);
//	temp.m_A = p1.m_A + p2.m_A;
//	temp.m_B = p1.m_B + p2.m_B;
//	return temp;
//}

//运算符重载 可以发生函数重载 
Person operator+(const Person& p2, int val)  
{
	Person temp;
	temp.m_A = p2.m_A + val;
	temp.m_B = p2.m_B + val;
	return temp;
}

void test() {

	Person p1(10, 10);
	Person p2(20, 20);

	//成员函数方式
	Person p3 = p2 + p1;  //相当于 p2.operaor+(p1)
	cout << "mA:" << p3.m_A << " mB:" << p3.m_B << endl;


	Person p4 = p3 + 10; //相当于 operator+(p3,10)
	cout << "mA:" << p4.m_A << " mB:" << p4.m_B << endl;

}

int main() {

	test();

	system("pause");

	return 0;
}

总结1:对于内置的数据类型的表达式的的运算符是不可能改变的

总结2:不要滥用运算符重载

4.5.2 左移运算符重载

作用:可以输出自定义数据类型

class Person {
	friend ostream& operator<<(ostream& out, Person& p);

public:

	Person(int a, int b)
	{
		this->m_A = a;
		this->m_B = b;
	}

	//成员函数 实现不了  p << cout 不是我们想要的效果
	//void operator<<(Person& p){
	//}

private:
	int m_A;
	int m_B;
};

//全局函数实现左移重载
//ostream对象只能有一个
ostream& operator<<(ostream& out, Person& p) {
	out << "a:" << p.m_A << " b:" << p.m_B;
	return out;
}

void test() {

	Person p1(10, 20);

	cout << p1 << "hello world" << endl; //链式编程
}

int main() {

	test();

	system("pause");

	return 0;
}

总结:重载左移运算符配合友元可以实现输出自定义数据类型

4.5.3 递增运算符重载

作用: 通过重载递增运算符,实现自己的整型数据


class MyInteger {

	friend ostream& operator<<(ostream& out, MyInteger myint);

public:
	MyInteger() {
		m_Num = 0;
	}
	//前置++
	MyInteger& operator++() {
		//先++
		m_Num++;
		//再返回
		return *this;
	}

	//后置++
	MyInteger operator++(int) {
		//先返回
		MyInteger temp = *this; //记录当前本身的值,然后让本身的值加1,但是返回的是以前的值,达到先返回后++;
		m_Num++;
		return temp;
	}

private:
	int m_Num;
};


ostream& operator<<(ostream& out, MyInteger myint) {
	out << myint.m_Num;
	return out;
}


//前置++ 先++ 再返回
void test01() {
	MyInteger myInt;
	cout << ++myInt << endl;
	cout << myInt << endl;
}

//后置++ 先返回 再++
void test02() {

	MyInteger myInt;
	cout << myInt++ << endl;
	cout << myInt << endl;
}

int main() {

	test01();
	//test02();

	system("pause");

	return 0;
}

总结: 前置递增返回引用,后置递增返回值

4.5.4 赋值运算符重载

c++编译器至少给一个类添加4个函数

  1. 默认构造函数(无参,函数体为空)
  2. 默认析构函数(无参,函数体为空)
  3. 默认拷贝构造函数,对属性进行值拷贝
  4. 赋值运算符 operator=, 对属性进行值拷贝

如果类中有属性指向堆区,做赋值操作时也会出现深浅拷贝问题

示例:

class Person
{
public:

	Person(int age)
	{
		//将年龄数据开辟到堆区
		m_Age = new int(age);
	}

	//重载赋值运算符 
	Person& operator=(Person &p)
	{
		if (m_Age != NULL)
		{
			delete m_Age;
			m_Age = NULL;
		}
		//编译器提供的代码是浅拷贝
		//m_Age = p.m_Age;

		//提供深拷贝 解决浅拷贝的问题
		m_Age = new int(*p.m_Age);

		//返回自身
		return *this;
	}


	~Person()
	{
		if (m_Age != NULL)
		{
			delete m_Age;
			m_Age = NULL;
		}
	}

	//年龄的指针
	int *m_Age;

};


void test01()
{
	Person p1(18);

	Person p2(20);

	Person p3(30);

	p3 = p2 = p1; //赋值操作

	cout << "p1的年龄为:" << *p1.m_Age << endl;

	cout << "p2的年龄为:" << *p2.m_Age << endl;

	cout << "p3的年龄为:" << *p3.m_Age << endl;
}

int main() {

	test01();

	//int a = 10;
	//int b = 20;
	//int c = 30;

	//c = b = a;
	//cout << "a = " << a << endl;
	//cout << "b = " << b << endl;
	//cout << "c = " << c << endl;

	system("pause");

	return 0;
}

4.5.5 关系运算符重载

作用:重载关系运算符,可以让两个自定义类型对象进行对比操作

示例:

class Person
{
public:
	Person(string name, int age)
	{
		this->m_Name = name;
		this->m_Age = age;
	};

	bool operator==(Person & p)
	{
		if (this->m_Name == p.m_Name && this->m_Age == p.m_Age)
		{
			return true;
		}
		else
		{
			return false;
		}
	}

	bool operator!=(Person & p)
	{
		if (this->m_Name == p.m_Name && this->m_Age == p.m_Age)
		{
			return false;
		}
		else
		{
			return true;
		}
	}

	string m_Name;
	int m_Age;
};

void test01()
{
	//int a = 0;
	//int b = 0;

	Person a("孙悟空", 18);
	Person b("孙悟空", 18);

	if (a == b)
	{
		cout << "a和b相等" << endl;
	}
	else
	{
		cout << "a和b不相等" << endl;
	}

	if (a != b)
	{
		cout << "a和b不相等" << endl;
	}
	else
	{
		cout << "a和b相等" << endl;
	}
}


int main() {

	test01();

	system("pause");

	return 0;
}

4.5.6 函数调用运算符重载

  • 函数调用运算符 () 也可以重载
  • 由于重载后使用的方式非常像函数的调用,因此称为仿函数
  • 仿函数没有固定写法,非常灵活

示例:

class MyPrint
{
public:
	void operator()(string text)
	{
		cout << text << endl;
	}

};
void test01()
{
	//重载的()操作符 也称为仿函数
	MyPrint myFunc;
	myFunc("hello world");
}


class MyAdd
{
public:
	int operator()(int v1, int v2)
	{
		return v1 + v2;
	}
};

void test02()
{
	MyAdd add;
	int ret = add(10, 10);
	cout << "ret = " << ret << endl;

	//匿名对象调用  
	cout << "MyAdd()(100,100) = " << MyAdd()(100, 100) << endl;
}

int main() {

	test01();
	test02();

	system("pause");

	return 0;
}

4.6 继承

继承是面向对象三大特性之一

有些类与类之间存在特殊的关系,例如下图中:

在这里插入图片描述

我们发现,定义这些类时,下级别的成员除了拥有上一级的共性,还有自己的特性。

这个时候我们就可以考虑利用继承的技术,减少重复代码

4.6.1 继承的基本语法

例如我们看到很多网站中,都有公共的头部,公共的底部,甚至公共的左侧列表,只有中心内容不同

接下来我们分别利用普通写法和继承的写法来实现网页中的内容,看一下继承存在的意义以及好处

普通实现:

//Java页面
class Java 
{
public:
	void header()
	{
		cout << "首页、公开课、登录、注册...(公共头部)" << endl;
	}
	void footer()
	{
		cout << "帮助中心、交流合作、站内地图...(公共底部)" << endl;
	}
	void left()
	{
		cout << "Java,Python,C++...(公共分类列表)" << endl;
	}
	void content()
	{
		cout << "JAVA学科视频" << endl;
	}
};
//Python页面
class Python
{
public:
	void header()
	{
		cout << "首页、公开课、登录、注册...(公共头部)" << endl;
	}
	void footer()
	{
		cout << "帮助中心、交流合作、站内地图...(公共底部)" << endl;
	}
	void left()
	{
		cout << "Java,Python,C++...(公共分类列表)" << endl;
	}
	void content()
	{
		cout << "Python学科视频" << endl;
	}
};
//C++页面
class CPP 
{
public:
	void header()
	{
		cout << "首页、公开课、登录、注册...(公共头部)" << endl;
	}
	void footer()
	{
		cout << "帮助中心、交流合作、站内地图...(公共底部)" << endl;
	}
	void left()
	{
		cout << "Java,Python,C++...(公共分类列表)" << endl;
	}
	void content()
	{
		cout << "C++学科视频" << endl;
	}
};

void test01()
{
	//Java页面
	cout << "Java下载视频页面如下: " << endl;
	Java ja;
	ja.header();
	ja.footer();
	ja.left();
	ja.content();
	cout << "--------------------" << endl;

	//Python页面
	cout << "Python下载视频页面如下: " << endl;
	Python py;
	py.header();
	py.footer();
	py.left();
	py.content();
	cout <

以上是关于《黑马程序员》C++核心编程的主要内容,如果未能解决你的问题,请参考以下文章

黑马程序员 C++教程从0到1入门编程笔记3C++核心编程(内存分区模型引用函数提高)

黑马程序员 C++教程从0到1入门编程笔记5C++核心编程(类和对象——继承多态)

黑马程序员 C++教程从0到1入门编程笔记5C++核心编程(类和对象——继承多态)

黑马程序员 C++教程从0到1入门编程笔记6C++核心编程(文件操作)

C++黑马程序员 | c++教程从0到1入门编程笔记 | c++提高编程

C++快速扫盲(核心篇)