C++快速扫盲(核心篇)
Posted zstar-_
tags:
篇首语:本文由小常识网(cha138.com)小编为大家整理,主要介绍了C++快速扫盲(核心篇)相关的知识,希望对你有一定的参考价值。
本文摘自黑马程序员匠心之作|C++教程从0到1入门编程,学习编程不再难课程讲义
C++核心编程
本阶段主要针对C++面向对象编程技术做详细讲解,探讨C++中的核心和精髓。
1 内存分区模型
C++程序在执行时,将内存大方向划分为4个区域
- 代码区:存放函数体的二进制代码,由操作系统进行管理的
- 全局区:存放全局变量和静态变量以及常量
- 栈区:由编译器自动分配释放, 存放函数的参数值,局部变量等
- 堆区:由程序员分配和释放,若程序员不释放,程序结束时由操作系统回收
内存四区意义:
不同区域存放的数据,赋予不同的生命周期, 给我们更大的灵活编程
1.1 程序运行前
在程序编译后,生成了exe可执行程序,未执行该程序前分为两个区域
代码区:
存放 CPU 执行的机器指令
代码区是共享的,共享的目的是对于频繁被执行的程序,只需要在内存中有一份代码即可
代码区是只读的,使其只读的原因是防止程序意外地修改了它的指令
全局区:
全局变量和静态变量存放在此.
全局区还包含了常量区, 字符串常量和其他常量也存放在此.
该区域的数据在程序结束后由操作系统释放.
示例:
//全局变量
int g_a = 10;
int g_b = 10;
//全局常量
const int c_g_a = 10;
const int c_g_b = 10;
int main()
//局部变量
int a = 10;
int b = 10;
//打印地址
cout << "局部变量a地址为: " << (int)&a << endl;
cout << "局部变量b地址为: " << (int)&b << endl;
cout << "全局变量g_a地址为: " << (int)&g_a << endl;
cout << "全局变量g_b地址为: " << (int)&g_b << endl;
//静态变量
static int s_a = 10;
static int s_b = 10;
cout << "静态变量s_a地址为: " << (int)&s_a << endl;
cout << "静态变量s_b地址为: " << (int)&s_b << endl;
cout << "字符串常量地址为: " << (int)&"hello world" << endl;
cout << "字符串常量地址为: " << (int)&"hello world1" << endl;
cout << "全局常量c_g_a地址为: " << (int)&c_g_a << endl;
cout << "全局常量c_g_b地址为: " << (int)&c_g_b << endl;
const int c_l_a = 10;
const int c_l_b = 10;
cout << "局部常量c_l_a地址为: " << (int)&c_l_a << endl;
cout << "局部常量c_l_b地址为: " << (int)&c_l_b << endl;
system("pause");
return 0;
总结:
- C++中在程序运行前分为全局区和代码区
- 代码区特点是共享和只读
- 全局区中存放全局变量、静态变量、常量
- 常量区中存放 const修饰的全局常量 和 字符串常量
1.2 程序运行后
栈区:
由编译器自动分配释放, 存放函数的参数值,局部变量等
注意事项:不要返回局部变量的地址,栈区开辟的数据由编译器自动释放
示例:
int * func()
int a = 10;
return &a;
int main()
int *p = func();
cout << *p << endl;
cout << *p << endl;
system("pause");
return 0;
堆区:
由程序员分配释放,若程序员不释放,程序结束时由操作系统回收
在C++中主要利用new在堆区开辟内存
示例:
int* func()
int* a = new int(10);
return a;
int main()
int *p = func();
cout << *p << endl;
cout << *p << endl;
system("pause");
return 0;
总结:
堆区数据由程序员管理开辟和释放
堆区数据利用new关键字进行开辟内存
1.3 new操作符
C++中利用new操作符在堆区开辟数据
堆区开辟的数据,由程序员手动开辟,手动释放,释放利用操作符 delete
语法:new 数据类型
利用new创建的数据,会返回该数据对应的类型的指针
示例1: 基本语法
int* func()
int* a = new int(10);
return a;
int main()
int *p = func();
cout << *p << endl;
cout << *p << endl;
//利用delete释放堆区数据
delete p;
//cout << *p << endl; //报错,释放的空间不可访问
system("pause");
return 0;
示例2:开辟数组
//堆区开辟数组
int main()
int* arr = new int[10];
for (int i = 0; i < 10; i++)
arr[i] = i + 100;
for (int i = 0; i < 10; i++)
cout << arr[i] << endl;
//释放数组 delete 后加 []
delete[] arr;
system("pause");
return 0;
2 引用
2.1 引用的基本使用
**作用: **给变量起别名
语法: 数据类型 &别名 = 原名
示例:
int main()
int a = 10;
int &b = a;
cout << "a = " << a << endl;
cout << "b = " << b << endl;
b = 100;
cout << "a = " << a << endl;
cout << "b = " << b << endl;
system("pause");
return 0;
2.2 引用注意事项
- 引用必须初始化
- 引用在初始化后,不可以改变
示例:
int main()
int a = 10;
int b = 20;
//int &c; //错误,引用必须初始化
int &c = a; //一旦初始化后,就不可以更改
c = b; //这是赋值操作,不是更改引用
cout << "a = " << a << endl;
cout << "b = " << b << endl;
cout << "c = " << c << endl;
system("pause");
return 0;
2.3 引用做函数参数
**作用:**函数传参时,可以利用引用的技术让形参修饰实参
**优点:**可以简化指针修改实参
示例:
//1. 值传递
void mySwap01(int a, int b)
int temp = a;
a = b;
b = temp;
//2. 地址传递
void mySwap02(int* a, int* b)
int temp = *a;
*a = *b;
*b = temp;
//3. 引用传递
void mySwap03(int& a, int& b)
int temp = a;
a = b;
b = temp;
int main()
int a = 10;
int b = 20;
mySwap01(a, b);
cout << "a:" << a << " b:" << b << endl;
mySwap02(&a, &b);
cout << "a:" << a << " b:" << b << endl;
mySwap03(a, b);
cout << "a:" << a << " b:" << b << endl;
system("pause");
return 0;
总结:通过引用参数产生的效果同按地址传递是一样的。引用的语法更清楚简单
2.4 引用做函数返回值
作用:引用是可以作为函数的返回值存在的
注意:不要返回局部变量引用
用法:函数调用作为左值
示例:
//返回局部变量引用int& test01() int a = 10; //局部变量 return a;//返回静态变量引用int& test02() static int a = 20; return a;int main() //不能返回局部变量的引用 int& ref = test01(); cout << "ref = " << ref << endl; cout << "ref = " << ref << endl; //如果函数做左值,那么必须返回引用 int& ref2 = test02(); cout << "ref2 = " << ref2 << endl; cout << "ref2 = " << ref2 << endl; test02() = 1000; cout << "ref2 = " << ref2 << endl; cout << "ref2 = " << ref2 << endl; system("pause"); return 0;
2.5 引用的本质
本质:引用的本质在c++内部实现是一个指针常量.
讲解示例:
//发现是引用,转换为 int* const ref = &a;void func(int& ref) ref = 100; // ref是引用,转换为*ref = 100int main() int a = 10; //自动转换为 int* const ref = &a; 指针常量是指针指向不可改,也说明为什么引用不可更改 int& ref = a; ref = 20; //内部发现ref是引用,自动帮我们转换为: *ref = 20; cout << "a:" << a << endl; cout << "ref:" << ref << endl; func(a); return 0;
结论:C++推荐用引用技术,因为语法方便,引用本质是指针常量,但是所有的指针操作编译器都帮我们做了
2.6 常量引用
**作用:**常量引用主要用来修饰形参,防止误操作
在函数形参列表中,可以加const修饰形参,防止形参改变实参
示例:
//引用使用的场景,通常用来修饰形参void showValue(const int& v) //v += 10; cout << v << endl;int main() //int& ref = 10; 引用本身需要一个合法的内存空间,因此这行错误 //加入const就可以了,编译器优化代码,int temp = 10; const int& ref = temp; const int& ref = 10; //ref = 100; //加入const后不可以修改变量 cout << ref << endl; //函数中利用常量引用防止误操作修改实参 int a = 10; showValue(a); system("pause"); return 0;
3 函数提高
3.1 函数默认参数
在C++中,函数的形参列表中的形参是可以有默认值的。
语法:返回值类型 函数名 (参数= 默认值)
示例:
int func(int a, int b = 10, int c = 10) return a + b + c;//1. 如果某个位置参数有默认值,那么从这个位置往后,从左向右,必须都要有默认值//2. 如果函数声明有默认值,函数实现的时候就不能有默认参数int func2(int a = 10, int b = 10);int func2(int a, int b) return a + b;int main() cout << "ret = " << func(20, 20) << endl; cout << "ret = " << func(100) << endl; system("pause"); return 0;
3.2 函数占位参数
C++中函数的形参列表里可以有占位参数,用来做占位,调用函数时必须填补该位置
语法: 返回值类型 函数名 (数据类型)
在现阶段函数的占位参数存在意义不大,但是后面的课程中会用到该技术
示例:
//函数占位参数 ,占位参数也可以有默认参数void func(int a, int) cout << "this is func" << endl;int main() func(10,10); //占位参数必须填补 system("pause"); return 0;
3.3 函数重载
3.3.1 函数重载概述
**作用:**函数名可以相同,提高复用性
函数重载满足条件:
- 同一个作用域下
- 函数名称相同
- 函数参数类型不同 或者 个数不同 或者 顺序不同
注意: 函数的返回值不可以作为函数重载的条件
示例:
//函数重载需要函数都在同一个作用域下void func() cout << "func 的调用!" << endl;void func(int a) cout << "func (int a) 的调用!" << endl;void func(double a) cout << "func (double a)的调用!" << endl;void func(int a ,double b) cout << "func (int a ,double b) 的调用!" << endl;void func(double a ,int b) cout << "func (double a ,int b)的调用!" << endl;//函数返回值不可以作为函数重载条件//int func(double a, int b)//// cout << "func (double a ,int b)的调用!" << endl;//int main() func(); func(10); func(3.14); func(10,3.14); func(3.14 , 10); system("pause"); return 0;
3.3.2 函数重载注意事项
- 引用作为重载条件
- 函数重载碰到函数默认参数
示例:
//函数重载注意事项//1、引用作为重载条件void func(int &a) cout << "func (int &a) 调用 " << endl;void func(const int &a) cout << "func (const int &a) 调用 " << endl;//2、函数重载碰到函数默认参数void func2(int a, int b = 10) cout << "func2(int a, int b = 10) 调用" << endl;void func2(int a) cout << "func2(int a) 调用" << endl;int main() int a = 10; func(a); //调用无const func(10);//调用有const //func2(10); //碰到默认参数产生歧义,需要避免 system("pause"); return 0;
4 类和对象
C++面向对象的三大特性为:封装、继承、多态
C++认为万事万物都皆为对象,对象上有其属性和行为
例如:
人可以作为对象,属性有姓名、年龄、身高、体重…,行为有走、跑、跳、吃饭、唱歌…
车也可以作为对象,属性有轮胎、方向盘、车灯…,行为有载人、放音乐、放空调…
具有相同性质的对象,我们可以抽象称为类,人属于人类,车属于车类
4.1 封装
4.1.1 封装的意义
封装是C++面向对象三大特性之一
封装的意义:
- 将属性和行为作为一个整体,表现生活中的事物
- 将属性和行为加以权限控制
封装意义一:
在设计类的时候,属性和行为写在一起,表现事物
语法: class 类名 访问权限: 属性 / 行为 ;
**示例1:**设计一个圆类,求圆的周长
示例代码:
//圆周率const double PI = 3.14;//1、封装的意义//将属性和行为作为一个整体,用来表现生活中的事物//封装一个圆类,求圆的周长//class代表设计一个类,后面跟着的是类名class Circlepublic: //访问权限 公共的权限 //属性 int m_r;//半径 //行为 //获取到圆的周长 double calculateZC() //2 * pi * r //获取圆的周长 return 2 * PI * m_r; ;int main() //通过圆类,创建圆的对象 // c1就是一个具体的圆 Circle c1; c1.m_r = 10; //给圆对象的半径 进行赋值操作 //2 * pi * 10 = = 62.8 cout << "圆的周长为: " << c1.calculateZC() << endl; system("pause"); return 0;
**示例2:**设计一个学生类,属性有姓名和学号,可以给姓名和学号赋值,可以显示学生的姓名和学号
示例2代码:
//学生类class Student public: void setName(string name) m_name = name; void setID(int id) m_id = id; void showStudent() cout << "name:" << m_name << " ID:" << m_id << endl; public: string m_name; int m_id;;int main() Student stu; stu.setName("德玛西亚"); stu.setID(250); stu.showStudent(); system("pause"); return 0;
封装意义二:
类在设计时,可以把属性和行为放在不同的权限下,加以控制
访问权限有三种:
- public 公共权限
- protected 保护权限
- private 私有权限
示例:
//三种权限//公共权限 public 类内可以访问 类外可以访问//保护权限 protected 类内可以访问 类外不可以访问//私有权限 private 类内可以访问 类外不可以访问class Person //姓名 公共权限public: string m_Name; //汽车 保护权限protected: string m_Car; //银行卡密码 私有权限private: int m_Password;public: void func() m_Name = "张三"; m_Car = "拖拉机"; m_Password = 123456; ;int main() Person p; p.m_Name = "李四"; //p.m_Car = "奔驰"; //保护权限类外访问不到 //p.m_Password = 123; //私有权限类外访问不到 system("pause"); return 0;
4.1.2 struct和class区别
在C++中 struct和class唯一的区别就在于 默认的访问权限不同
区别:
- struct 默认权限为公共
- class 默认权限为私有
class C1 int m_A; //默认是私有权限;struct C2 int m_A; //默认是公共权限;int main() C1 c1; c1.m_A = 10; //错误,访问权限是私有 C2 c2; c2.m_A = 10; //正确,访问权限是公共 system("pause"); return 0;
4.1.3 成员属性设置为私有
**优点1:**将所有成员属性设置为私有,可以自己控制读写权限
**优点2:**对于写权限,我们可以检测数据的有效性
示例:
class Person public: //姓名设置可读可写 void setName(string name) m_Name = name; string getName() return m_Name; //获取年龄 int getAge() return m_Age; //设置年龄 void setAge(int age) if (age < 0 || age > 150) cout << "你个老妖精!" << endl; return; m_Age = age; //情人设置为只写 void setLover(string lover) m_Lover = lover; private: string m_Name; //可读可写 姓名 int m_Age; //只读 年龄 string m_Lover; //只写 情人;int main() Person p; //姓名设置 p.setName("张三"); cout << "姓名: " << p.getName() << endl; //年龄设置 p.setAge(50); cout << "年龄: " << p.getAge() << endl; //情人设置 p.setLover("苍井"); //cout << "情人: " << p.m_Lover << endl; //只写属性,不可以读取 system("pause"); return 0;
练习案例1:设计立方体类
设计立方体类(Cube)
求出立方体的面积和体积
分别用全局函数和成员函数判断两个立方体是否相等。
4.2 对象的初始化和清理
- 生活中我们买的电子产品都基本会有出厂设置,在某一天我们不用时候也会删除一些自己信息数据保证安全
- C++中的面向对象来源于生活,每个对象也都会有初始设置以及 对象销毁前的清理数据的设置。
4.2.1 构造函数和析构函数
对象的初始化和清理也是两个非常重要的安全问题
一个对象或者变量没有初始状态,对其使用后果是未知
同样的使用完一个对象或变量,没有及时清理,也会造成一定的安全问题
c++利用了构造函数和析构函数解决上述问题,这两个函数将会被编译器自动调用,完成对象初始化和清理工作。
对象的初始化和清理工作是编译器强制要我们做的事情,因此如果我们不提供构造和析构,编译器会提供
编译器提供的构造函数和析构函数是空实现。
- 构造函数:主要作用在于创建对象时为对象的成员属性赋值,构造函数由编译器自动调用,无须手动调用。
- 析构函数:主要作用在于对象销毁前系统自动调用,执行一些清理工作。
构造函数语法:类名()
- 构造函数,没有返回值也不写void
- 函数名称与类名相同
- 构造函数可以有参数,因此可以发生重载
- 程序在调用对象时候会自动调用构造,无须手动调用,而且只会调用一次
析构函数语法: ~类名()
- 析构函数,没有返回值也不写void
- 函数名称与类名相同,在名称前加上符号 ~
- 析构函数不可以有参数,因此不可以发生重载
- 程序在对象销毁前会自动调用析构,无须手动调用,而且只会调用一次
class Personpublic: //构造函数 Person() cout << "Person的构造函数调用" << endl; //析构函数 ~Person() cout << "Person的析构函数调用" << endl; ;void test01() Person p;int main() test01(); system("pause"); return 0;
4.2.2 构造函数的分类及调用
两种分类方式:
按参数分为: 有参构造和无参构造
按类型分为: 普通构造和拷贝构造
三种调用方式:
括号法
显示法
隐式转换法
示例:
//1、构造函数分类// 按照参数分类分为 有参和无参构造 无参又称为默认构造函数// 按照类型分类分为 普通构造和拷贝构造class Person public: //无参(默认)构造函数 Person() cout << "无参构造函数!" << endl; //有参构造函数 Person(int a) age = a; cout << "有参构造函数!" << endl; //拷贝构造函数 Person(const Person& p) age = p.age; cout << "拷贝构造函数!" << endl; //析构函数 ~Person() cout << "析构函数!" << endl; public: int age;;//2、构造函数的调用//调用无参构造函数void test01() Person p; //调用无参构造函数//调用有参的构造函数void test02() //2.1 括号法,常用 Person p1(10); //注意1:调用无参构造函数不能加括号,如果加了编译器认为这是一个函数声明 //Person p2(); //2.2 显式法 Person p2 = Person(10); Person p3 = Person(p2); //Person(10)单独写就是匿名对象 当前行结束之后,马上析构 //2.3 隐式转换法 Person p4 = 10; // Person p4 = Person(10); Person p5 = p4; // Person p5 = Person(p4); //注意2:不能利用 拷贝构造函数 初始化匿名对象 编译器认为是对象声明 //Person p5(p4);int main() test01(); //test02(); system("pause"); return 0;
4.2.3 拷贝构造函数调用时机
C++中拷贝构造函数调用时机通常有三种情况
- 使用一个已经创建完毕的对象来初始化一个新对象
- 值传递的方式给函数参数传值
- 以值方式返回局部对象
示例:
class Person public: Person() cout << "无参构造函数!" << endl; mAge = 0; Person(int age) cout << "有参构造函数!" << endl; mAge = age; Person(const Person& p) cout << "拷贝构造函数!" << endl; mAge = p.mAge; //析构函数在释放内存之前调用 ~Person() cout << "析构函数!" << endl; public: int mAge;;//1. 使用一个已经创建完毕的对象来初始化一个新对象void test01() Person man(100); //p对象已经创建完毕 Person newman(man); //调用拷贝构造函数 Person newman2 = man; //拷贝构造 //Person newman3; //newman3 = man; //不是调用拷贝构造函数,赋值操作//2. 值传递的方式给函数参数传值//相当于Person p1 = p;void doWork(Person p1) void test02() Person p; //无参构造函数 doWork(p);//3. 以值方式返回局部对象Person doWork2() Person p1; cout << (int *)&p1 << endl; return p1;void test03() Person p = doWork2(); cout << (int *)&p << endl;int main() //test01(); //test02(); test03(); system("pause"); return 0;
4.2.4 构造函数调用规则
默认情况下,c++编译器至少给一个类添加3个函数
1.默认构造函数(无参,函数体为空)
2.默认析构函数(无参,函数体为空)
3.默认拷贝构造函数,对属性进行值拷贝
构造函数调用规则如下:
-
如果用户定义有参构造函数,c++不在提供默认无参构造,但是会提供默认拷贝构造
-
如果用户定义拷贝构造函数,c++不会再提供其他构造函数
示例:
class Person public: //无参(默认)构造函数 Person() cout << "无参构造函数!" << endl; //有参构造函数 Person(int a) age = a; cout << "有参构造函数!" << endl; //拷贝构造函数 Person(const Person& p) age = p.age; cout << "拷贝构造函数!" << endl; //析构函数 ~Person() cout << "析构函数!" << endl; public: int age;;void test01() Person p1(18); //如果不写拷贝构造,编译器会自动添加拷贝构造,并且做浅拷贝操作 Person p2(p1); cout << "p2的年龄为: " << p2.age << endl;void test02() //如果用户提供有参构造,编译器不会提供默认构造,会提供拷贝构造 Person p1; //此时如果用户自己没有提供默认构造,会出错 Person p2(10); //用户提供的有参 Person p3(p2); //此时如果用户没有提供拷贝构造,编译器会提供 //如果用户提供拷贝构造,编译器不会提供其他构造函数 Person p4; //此时如果用户自己没有提供默认构造,会出错 Person p5(10); //此时如果用户自己没有提供有参,会出错 Person p6(p5); //用户自己提供拷贝构造int main() test01(); system("pause"); return 0;
4.2.5 深拷贝与浅拷贝
深浅拷贝是面试经典问题,也是常见的一个坑
浅拷贝:简单的赋值拷贝操作
深拷贝:在堆区重新申请空间,进行拷贝操作
示例:
class Person public: //无参(默认)构造函数 Person() cout << "无参构造函数!" << endl; //有参构造函数 Person(int age ,int height) cout << "有参构造函数!" << endl; m_age = age; m_height = new int(height); //拷贝构造函数 Person(const Person& p) cout << "拷贝构造函数!" << endl; //如果不利用深拷贝在堆区创建新内存,会导致浅拷贝带来的重复释放堆区问题 m_age = p.m_age; m_height = new int(*p.m_height); //析构函数 ~Person() cout << "析构函数!" << endl; if (m_height != NULL) delete m_height; public: int m_age; int* m_height;;void test01() Person p1(18, 180); Person p2(p1); cout << "p1的年龄: " << p1.m_age << " 身高: " << *p1.m_height << endl; cout << "p2的年龄: " << p2.m_age << " 身高: " << *p2.m_height << endl;int main() test01(); system("pause"); return 0;
总结:如果属性有在堆区开辟的,一定要自己提供拷贝构造函数,防止浅拷贝带来的问题
4.2.6 初始化列表
作用:
C++提供了初始化列表语法,用来初始化属性
语法:构造函数():属性1(值1),属性2(值2)...
示例:
class Person public: 传统方式初始化 //Person(int a, int b, int c) // m_A = a; // m_B = b; // m_C = c; // //初始化列表方式初始化 Person(int a, int b, int c) :m_A(a), m_B(b), m_C(c) void PrintPerson() cout << "mA:" << m_A << endl; cout << "mB:" << m_B << endl; cout << "mC:" << m_C << endl; private: int m_A; int m_B; int m_C;;int main() Person p(1, 2, 3); p.PrintPerson(); system("pause"); return 0;
4.2.7 类对象作为类成员
C++类中的成员可以是另一个类的对象,我们称该成员为 对象成员
例如:
class A class B A a;
B类中有对象A作为成员,A为对象成员
那么当创建B对象时,A与B的构造和析构的顺序是谁先谁后?
示例:
class Phonepublic: Phone(string name) m_PhoneName = name; cout << "Phone构造" << endl; ~Phone() cout << "Phone析构" << endl; string m_PhoneName;;class Personpublic: //初始化列表可以告诉编译器调用哪一个构造函数 Person(string name, string pName) :m_Name(name), m_Phone(pName) cout << "Person构造" << endl; ~Person() cout << "Person析构" << endl; void playGame() cout << m_Name << " 使用" << m_Phone.m_PhoneName << " 牌手机! " << endl; string m_Name; Phone m_Phone;;void test01() //当类中成员是其他类对象时,我们称该成员为 对象成员 //构造的顺序是 :先调用对象成员的构造,再调用本类构造 //析构顺序与构造相反 Person p("张三" , "苹果X"); p.playGame();int main() test01(); system("pause"); return 0;
4.2.8 静态成员
静态成员就是在成员变量和成员函数前加上关键字static,称为静态成员
静态成员分为:
- 静态成员变量
- 所有对象共享同一份数据
- 在编译阶段分配内存
- 类内声明,类外初始化
- 静态成员函数
- 所有对象共享同一个函数
- 静态成员函数只能访问静态成员变量
**示例1 :**静态成员变量
class Person public: static int m_A; //静态成员变量 //静态成员变量特点: //1 在编译阶段分配内存 //2 类内声明,类外初始化 //3 所有对象共享同一份数据private: static int m_B; //静态成员变量也是有访问权限的;int Person::m_A = 10;int Person::m_B = 10;void test01() //静态成员变量两种访问方式 //1、通过对象 Person p1; p1.m_A = 100; cout << "p1.m_A = " << p1.m_A << endl; Person p2; p2.m_A = 200; cout << "p1.m_A = " << p1.m_A << endl; //共享同一份数据 cout << "p2.m_A = " << p2.m_A << endl; //2、通过类名 cout << "m_A = " << Person::m_A << endl; //cout << "m_B = " << Person::m_B << endl; //私有权限访问不到int main() test01(); system("pause"); return 0;
**示例2:**静态成员函数
class Personpublic: //静态成员函数特点: //1 程序共享一个函数 //2 静态成员函数只能访问静态成员变量 static void func() cout << "func调用" << endl; m_A = 100; //m_B = 100; //错误,不可以访问非静态成员变量 static int m_A; //静态成员变量 int m_B; // private: //静态成员函数也是有访问权限的 static void func2() cout << "func2调用" << endl; ;int Person::m_A = 10;void test01() //静态成员变量两种访问方式 //1、通过对象 Person p1; p1.func(); //2、通过类名 Person::func(); //Person::func2(); //私有权限访问不到int main() test01(); system("pause"); return 0;
4.3 C++对象模型和this指针
4.3.1 成员变量和成员函数分开存储
在C++中,类内的成员变量和成员函数分开存储
只有非静态成员变量才属于类的对象上
class Person public: Person() mA = 0; //非静态成员变量占对象空间 int mA; //静态成员变量不占对象空间 static int mB; //函数也不占对象空间,所有函数共享一个函数实例 void func() cout << "mA:" << this->mA << endl; //静态成员函数也不占对象空间 static void sfunc() ;int main() cout << sizeof(Person) << endl; system("pause"); return 0;
4.3.2 this指针概念
通过4.3.1我们知道在C++中成员变量和成员函数是分开存储的
每一个非静态成员函数只会诞生一份函数实例,也就是说多个同类型的对象会共用一块代码
那么问题是:这一块代码是如何区分那个对象调用自己的呢?
c++通过提供特殊的对象指针,this指针,解决上述问题。this指针指向被调用的成员函数所属的对象
this指针是隐含每一个非静态成员函数内的一种指针
this指针不需要定义,直接使用即可
this指针的用途:
- 当形参和成员变量同名时,可用this指针来区分
- 在类的非静态成员函数中返回对象本身,可使用return *this
class Personpublic: Person(int age) //1、当形参和成员变量同名时,可用this指针来区分 this->age = age; Person& PersonAddPerson(Person p) this->age += p.age; //返回对象本身 return *this; int age;;void test01() Person p1(10); cout << "p1.age = " << p1.age << endl; Person p2(10); p2.PersonAddPerson(p1).PersonAddPerson(p1).PersonAddPerson(p1); cout << "p2.age = " << p2.age << endl;int main() test01(); system("pause"); return 0;
4.3.3 空指针访问成员函数
C++中空指针也是可以调用成员函数的,但是也要注意有没有用到this指针
如果用到this指针,需要加以判断保证代码的健壮性
示例:
//空指针访问成员函数class Person public: void ShowClassName() cout << "我是Person类!" << endl; void ShowPerson() if (this == NULL) return; cout << mAge << endl; public: int mAge;;void test01() Person * p = NULL; p->ShowClassName(); //空指针,可以调用成员函数 p->ShowPerson(); //但是如果成员函数中用到了this指针,就不可以了int main() test01(); system("pause"); return 0;
4.3.4 const修饰成员函数
常函数:
- 成员函数后加const后我们称为这个函数为常函数
- 常函数内不可以修改成员属性
- 成员属性声明时加关键字mutable后,在常函数中依然可以修改
常对象:
- 声明对象前加const称该对象为常对象
- 常对象只能调用常函数
示例:
class Person public: Person() m_A = 0; m_B = 0; //this指针的本质是一个指针常量,指针的指向不可修改 //如果想让指针指向的值也不可以修改,需要声明常函数 void ShowPerson() const //const Type* const pointer; //this = NULL; //不能修改指针的指向 Person* const this; //this->mA = 100; //但是this指针指向的对象的数据是可以修改的 //const修饰成员函数,表示指针指向的内存空间的数据不能修改,除了mutable修饰的变量 this->m_B = 100; void MyFunc() const //mA = 10000; public: int m_A; mutable int m_B; //可修改 可变的;//const修饰对象 常对象void test01() const Person person; //常量对象 cout << person.m_A << endl; //person.mA = 100; //常对象不能修改成员变量的值,但是可以访问 person.m_B = 100; //但是常对象可以修改mutable修饰成员变量 //常对象访问成员函数 person.MyFunc(); //常对象不能调用const的函数int main() test01(); system("pause"); return 0;
4.4 友元
生活中你的家有客厅(Public),有你的卧室(Private)
客厅所有来的客人都可以进去,但是你的卧室是私有的,也就是说只有你能进去
但是呢,你也可以允许你的好闺蜜好基友进去。
在程序里,有些私有属性 也想让类外特殊的一些函数或者类进行访问,就需要用到友元的技术
友元的目的就是让一个函数或者类 访问另一个类中私有成员
友元的关键字为 friend
友元的三种实现
- 全局函数做友元
- 类做友元
- 成员函数做友元
4.4.1 全局函数做友元
class Building //告诉编译器 goodGay全局函数 是 Building类的好朋友,可以访问类中的私有内容 friend void goodGay(Building * building);public: Building() this->m_SittingRoom = "客厅"; this->m_BedRoom = "卧室"; public: string m_SittingRoom; //客厅private: string m_BedRoom; //卧室;void goodGay(Building * building) cout << "好基友正在访问: " << building->m_SittingRoom << endl; cout << "好基友正在访问: " << building->m_BedRoom << endl;void test01() Building b; goodGay(&b);int main() test01(); system("pause"); return 0;
4.4.2 类做友元
class Building;class goodGaypublic: goodGay(); void visit();private: Building *building;;class Building //告诉编译器 goodGay类是Building类的好朋友,可以访问到Building类中私有内容 friend class goodGay;public: Building();public: string m_SittingRoom; //客厅private: string m_BedRoom;//卧室;Building::Building() this->m_SittingRoom = "客厅"; this->m_BedRoom = "卧室";goodGay::goodGay() building = new Building;void goodGay::visit() cout << "好基友正在访问" << building->m_SittingRoom << endl; cout << "好基友正在访问" << building->m_BedRoom << endl;void test01() goodGay gg; gg.visit();int main() test01(); system("pause"); return 0;
4.4.3 成员函数做友元
class Building;class goodGaypublic: goodGay(); void visit(); //只让visit函数作为Building的好朋友,可以发访问Building中私有内容 void visit2(); private: Building *building;;class Building //告诉编译器 goodGay类中的visit成员函数 是Building好朋友,可以访问私有内容 friend void goodGay::visit();public: Building();public: string m_SittingRoom; //客厅private: string m_BedRoom;//卧室;Building::Building() this->m_SittingRoom = "客厅"; this->m_BedRoom = "卧室";goodGay::goodGay() building = new Building;void goodGay::visit() cout << "好基友正在访问" << building->m_SittingRoom << endl; cout << "好基友正在访问" << building->m_BedRoom << endl;void goodGay::visit2() cout << "好基友正在访问" << building->m_SittingRoom << endl; //cout << "好基友正在访问" << building->m_BedRoom << endl;void test01() goodGay gg; gg.visit();int main() test01(); system("pause"); return 0;
4.5 运算符重载
运算符重载概念:对已有的运算符重新进行定义,赋予其另一种功能,以适应不同的数据类型
4.5.1 加号运算符重载
作用:实现两个自定义数据类型相加的运算
class Person public: Person() ; Person(int a, int b) this->m_A = a; this->m_B = b; //成员函数实现 + 号运算符重载 Person operator+(const Person& p) Person temp; temp.m_A = this->m_A + p.m_A; temp.m_B = this->m_B + p.m_B; return temp; public: int m_A; int m_B;;//全局函数实现 + 号运算符重载//Person operator+(const Person& p1, const Person& p2) // Person temp(0, 0);// temp.m_A = p1.m_A + p2.m_A;// temp.m_B = p1.m_B + p2.m_B;// return temp;////运算符重载 可以发生函数重载 Person operator+(const Person& p2, int val) Person temp; temp.m_A = p2.m_A + val; temp.m_B = p2.m_B + val; return temp;void test() Person p1(10, 10); Person p2(20, 20); //成员函数方式 Person p3 = p2 + p1; //相当于 p2.operaor+(p1) cout << "mA:" << p3.m_A << " mB:" << p3.m_B << endl; Person p4 = p3 + 10; //相当于 operator+(p3,10) cout << "mA:" << p4.m_A << " mB:" << p4.m_B << endl;int main() test(); system("pause"); return 0;
总结1:对于内置的数据类型的表达式的的运算符是不可能改变的
总结2:不要滥用运算符重载
4.5.2 左移运算符重载
作用:可以输出自定义数据类型
class Person friend ostream& operator<<(ostream& out, Person& p);public: Person(int a, int b) this->m_A = a; this->m_B = b; //成员函数 实现不了 p << cout 不是我们想要的效果 //void operator<<(Person& p) //private: int m_A; int m_B;;//全局函数实现左移重载//ostream对象只能有一个ostream& operator<<(ostream& out, Person& p) out << "a:" << p.m_A << " b:" << p.m_B; return out;void test() Person p1(10, 20); cout << p1 << "hello world" << endl; //链式编程int main() test(); system("pause"); return 0;
总结:重载左移运算符配合友元可以实现输出自定义数据类型
4.5.3 递增运算符重载
作用: 通过重载递增运算符,实现自己的整型数据
class MyInteger friend ostream& operator<<(ostream& out, MyInteger myint);public: MyInteger() m_Num = 0; //前置++ MyInteger& operator++() //先++ m_Num++; //再返回 return *this; //后置++ MyInteger operator++(int) //先返回 MyInteger temp = *this; //记录当前本身的值,然后让本身的值加1,但是返回的是以前的值,达到先返回后++; m_Num++; return temp; private: int m_Num;;ostream& operator<<(ostream& out, MyInteger myint) out << myint.m_Num; return out;//前置++ 先++ 再返回void test01() MyInteger myInt; cout << ++myInt << endl; cout << myInt << endl;//后置++ 先返回 再++void test02() MyInteger myInt; cout << myInt++ << endl; cout << myInt << endl;int main() test01(); //test02(); system("pause"); return 0;
总结: 前置递增返回引用,后置递增返回值
4.5.4 赋值运算符重载
c++编译器至少给一个类添加4个函数
- 默认构造函数(无参,函数体为空)
- 默认析构函数(无参,函数体为空)
- 默认拷贝构造函数,对属性进行值拷贝
- 赋值运算符 operator=, 对属性进行值拷贝
如果类中有属性指向堆区,做赋值操作时也会出现深浅拷贝问题
示例:
class Personpublic: Person(int age) //将年龄数据开辟到堆区 m_Age = new int(age); //重载赋值运算符 Person& operator=(Person &p) if (m_Age != NULL) delete m_Age; m_Age = NULL; //编译器提供的代码是浅拷贝 //m_Age = p.m_Age; //提供深拷贝 解决浅拷贝的问题 m_Age = new int(*p.m_Age); //返回自身 return *this; ~Person() if (m_Age != NULL) delete m_Age; m_Age = NULL; //年龄的指针 int *m_Age;;void test01() Person p1(18); Person p2(20); Person p3(30); p3 = p2 = p1; //赋值操作 cout << "p1的年龄为:" << *p1.m_Age << endl; cout << "p2的年龄为:" << *p2.m_Age << endl; cout << "p3的年龄为:" << *p3.m_Age << endl;int main() test01(); //int a = 10; //int b = 20; //int c = 30; //c = b = a; //cout << "a = " << a << endl; //cout << "b = " << b << endl; //cout << "c = " << c << endl; system("pause"); return 0;
4.5.5 关系运算符重载
**作用:**重载关系运算符,可以让两个自定义类型对象进行对比操作
示例:
class Personpublic: Person(string name, int age) this->m_Name = name; this->m_Age = age; ; bool operator==(Person & p) if (this->m_Name == p.m_Name && this->m_Age == p.m_Age) return true; else return false; bool operator!=(Person & p) if (this->m_Name == p.m_Name && this->m_Age == p.m_Age) return false; else return true; string m_Name; int m_Age;;void test01() //int a = 0; //int b = 0; Person a("孙悟空", 18); Person b("孙悟空", 18); if (a == b) cout << "a和b相等" << endl; else cout << "a和b不相等" << endl; if (a != b) cout << "a和b不相等" << endl; else cout << "a和b相等" << endl; int main() test01(); system("pause"); return 0;
4.5.6 函数调用运算符重载
- 函数调用运算符 () 也可以重载
- 由于重载后使用的方式非常像函数的调用,因此称为仿函数
- 仿函数没有固定写法,非常灵活
示例:
class MyPrintpublic: void operator()(string text) cout << text << endl; ;void test01() //重载的()操作符 也称为仿函数 MyPrint myFunc; myFunc("hello world");class MyAddpublic: int operator()(int v1, int v2) return v1 + v2; ;void test02() MyAdd add; int ret = add(10, 10); cout << "ret = " << ret << endl; //匿名对象调用 cout << "MyAdd()(100,100) = " << MyAdd()(100, 100) << endl;int main() test01(); test02(); system("pause"); return 0;
4.6 继承
继承是面向对象三大特性之一
我们发现,定义这些类时,下级别的成员除了拥有上一级的共性,还有自己的特性。
这个时候我们就可以考虑利用继承的技术,减少重复代码
4.6.1 继承的基本语法
例如我们看到很多网站中,都有公共的头部,公共的底部,甚至公共的左侧列表,只有中心内容不同
接下来我们分别利用普通写法和继承的写法来实现网页中的内容,看一下继承存在的意义以及好处
普通实现:
//Java页面class Java public: void header() cout << "首页、公开课、登录、注册...(公共头部)" << endl; void footer() cout << "帮助中心、交流合作、站内地图...(公共底部)" << endl; void left() cout << "Java,Python,C++...(公共分类列表)" << endl; void content() cout << "JAVA学科视频" << endl; ;//Python页面class Pythonpublic: void header() cout << "首页、公开课、登录、注册...(公共头部)" << endl; void footer() cout << "帮助中心、交流合作、站内地图...(公共底部)" << endl; void left() cout << "Java,Python,C++...(公共分类列表)" << endl; void content() cout << "Python学科视频" << endl; ;//C++页面class CPP public: void header() cout << "首页、公开课、登录、注册...(公共头部)" << endl; void footer() cout << "帮助中心、交流合作、站内地图...(公共底部)" << endl; void left() cout << "Java,Python,C++...(公共分类列表)" << endl; void content() cout << "C++学科视频" << endl; ;void test01() //Java页面 cout << "Java下载视频页面如下: " << endl; Java ja; ja.header(); ja.footer(); ja.left(); ja.content(); cout << "--------------------" << endl; //Python页面 cout << "Python下载视频页面如下: " << endl; Python py; py.header(); py.footer(); py.left(); py.content(); cout << "--------------------" << endl; //C++页面 cout << "C++下载视频页面如下: " << endl; CPP cp; cp.header(); cp.footer(); cp.left(); cp.content();int main() test01(); system("pause"); return 0;
继承实现:
//公共页面class BasePagepublic: void header() cout << "首页、公开课、登录、注册...(公共头部)" << endl; void footer() cout << "帮助中心、交流合作、站内地图...(公共底部)" << endl; void left() cout << "Java,Python,C++...(公共分类列表)" << endl; ;//Java页面class Java : public BasePagepublic: void content() cout << "JAVA学科视频" << endl; ;//Python页面class Python : public BasePagepublic: void content() cout << "Python学科视频" << endl; ;//C++页面class CPP : public BasePagepublic: void content() cout << "C++学科视频" << endl; ;void test01() //Java页面 cout << "Java下载视频页面如下: " << endl; Java ja; ja.header(); ja.footer(); ja.left(); ja.content(); cout << "--------------------" << endl; //Python页面 cout << "Python下载视频页面如下: " << endl; Python py; py.header(); py.footer(); py.left(); py.content(); cout << "--------------------" << endl; //C++页面 cout << "C++下载视频页面如下: " << endl; CPP cp; cp.header(); cp.footer(); cp.left(); cp.content();int main() test01(); system("pause"); return 0;
总结:
继承的好处:可以减少重复的代码
class A : public B;
A 类称为子类 或 派生类
B 类称为父类 或 基类
派生类中的成员,包含两大部分:
一类是从基类继承过来的,一类是自己增加的成员。
从基类继承过过来的表现其共性,而新增的成员体现了其个性。
4.6.2 继承方式
继承的语法:class 子类 : 继承方式 父类
继承方式一共有三种:
- 公共继承
- 保护继承
- 私有继承
示例:
class Base1public: int m_A;protected: int m_B;private: int m_C;;//公共继承class Son1 :public Base1public: void func() m_A; //可访问 public权限 m_B; //可访问 protected权限 //m_C; //不可访问 ;void myClass() Son1 s1; s1.m_A; //其他类只能访问到公共权限//保护继承class Base2public: int m_A;protected: int m_B;private: int m_C;;class Son2:protected Base2public: void func() m_A; //可访问 protected权限 m_B; //可访问 protected权限 //m_C; //不可访问 ;void myClass2() Son2 s; //s.m_A; //不可访问//私有继承class Base3public: int m_A;protected: int m_B;private: int m_C;;class Son3:private Base3public: void func() m_A; //可访问 private权限 m_B; //可访问 private权限 //m_C; //不可访问 ;class GrandSon3 :public Son3public: void func() //Son3是私有继承,所以继承Son3的属性在GrandSon3中都无法访问到 //m_A; //m_B; //m_C; ;
4.6.3 继承中的对象模型
**问题:**从父类继承过来的成员,哪些属于子类对象中?
示例:
class Basepublic: int m_A;protected: int m_B;private: int m_C; //私有成员只是被隐藏了,但是还是会继承下去;//公共继承class Son :public Basepublic: int m_D;;void test01() cout << "sizeof Son = " << sizeof(Son) << endl;int main() test01(); system("pause"); return 0;
利用工具查看:
打开工具窗口后,定位到当前CPP文件的盘符
然后输入: cl /d1 reportSingleClassLayout查看的类名 所属文件名
结论: 父类中私有成员也是被子类继承下去了,只是由编译器给隐藏后访问不到
4.6.4 继承中构造和析构顺序
子类继承父类后,当创建子类对象,也会调用父类的构造函数
问题:父类和子类的构造和析构顺序是谁先谁后?
示例:
class Base public: Base() cout << "Base构造函数!" << endl; ~Base() cout << "Base析构函数!" << endl; ;class Son : public Basepublic: Son() cout << "Son构造函数!" << endl; ~Son() cout << "Son析构函数!" << endl; ;void test01() //继承中 先调用父类构造函数,再调用子类构造函数,析构顺序与构造相反 Son s;int main() test01(); system("pause"); return 0;
总结:继承中 先调用父类构造函数,再调用子类构造函数,析构顺序与构造相反
4.6.5 继承同名成员处理方式
问题:当子类与父类出现同名的成员,如何通过子类对象,访问到子类或父类中同名的数据呢?
- 访问子类同名成员 直接访问即可
- 访问父类同名成员 需要加作用域
示例:
class Base public: Base() m_A = 100; void func() cout << "Base - func()调用" << endl; void func(int a) cout << "Base - func(int a)调用" << endl; public: int m_A;;class Son : public Base public: Son() m_A = 200; //当子类与父类拥有同名的成员函数,子类会隐藏父类中所有版本的同名成员函数 //如果想访问父类中被隐藏的同名成员函数,需要加父类的作用域 void func() cout << "Son - func()调用" << endl; public: int m_A;;void test01() Son s; cout << "Son下的m_A = " << s.m_A << endl; cout << "Base下的m_A = " << s.Base::m_A << endl; s.func(); s.Base::func(); s.Base::func(10);int main() test01(); system("pause"); return EXIT_SUCCESS;
总结:
- 子类对象可以直接访问到子类中同名成员
- 子类对象加作用域可以访问到父类同名成员
- 当子类与父类拥有同名的成员函数,子类会隐藏父类中同名成员函数,加作用域可以访问到父类中同名函数
4.6.6 继承同名静态成员处理方式
问题:继承中同名的静态成员在子类对象上如何进行访问?
静态成员和非静态成员出现同名,处理方式一致
- 访问子类同名成员 直接访问即可
- 访问父类同名成员 需要加作用域
示例:
class Base public: static void func() cout << "Base - static void func()" << endl; static void func(int a) cout << "Base - static void func(int a)" << endl; static int m_A;;int Base::m_A = 100;class Son : public Base public: static void func() cout << "Son - static void func()" << endl; static int m_A;;int Son::m_A = 200;//同名成员属性void test01() //通过对象访问 cout << "通过对象访问: " << endl; Son s; cout << "Son 下 m_A = " << s.m_A << endl; cout << "Base 下 m_A = " << s.Base::m_A << endl; //通过类名访问 cout << "通过类名访问: " << endl; cout << "Son 下 m_A = " << Son::m_A << endl; cout << "Base 下 m_A = " << Son::Base::m_A << endl;//同名成员函数void test02() //通过对象访问 cout << "通过对象访问: " << endl; Son s; s.func(); s.Base::func(); cout << "通过类名访问: " << endl; Son::func(); Son::Base::func(); //出现同名,子类会隐藏掉父类中所有同名成员函数,需要加作作用域访问 Son::Base::func(100);int main() 以上是关于C++快速扫盲(核心篇)的主要内容,如果未能解决你的问题,请参考以下文章