第一篇:Centos7 Hadoop 2.7.7 集群部署
Posted DataLink数据中台
tags:
篇首语:本文由小常识网(cha138.com)小编为大家整理,主要介绍了第一篇:Centos7 Hadoop 2.7.7 集群部署相关的知识,希望对你有一定的参考价值。
第一篇:Centos7 Hadoop 2.7.7 集群部署
1. 准备工作
1.1 梳理服务器节点
1.1.1 节点信息
序号 | IP | 管理员账号 | 操作系统 | 核数 | 内存 | 磁盘 | HOST别名 |
---|---|---|---|---|---|---|---|
1 | 192.168.123.156 | root/123456 | Linux 7.6 | 16C | 32G | 2T | node1 |
2 | 192.168.123.157 | root/123456 | Linux 7.6 | 16C | 32G | 2T | node2 |
3 | 192.168.123.158 | root/123456 | Linux 7.6 | 16C | 32G | 2T | node3 |
1.1.1 验证操作系统发行版本
[root@node1 ~]# uname -a
Linux node1 3.10.0-957.el7.x86_64 #1 SMP Thu Oct 4 20:48:51 UTC 2018 x86_64 x86_64 x86_64 GNU/Linux
由Linux和el7可得真实操作系统符合要求。
1.1.2 查看节点磁盘挂载情况
[root@node1 ~]# df -h
文件系统 容量 已用 可用 已用% 挂载点
/dev/mapper/rhel-root 44G 5.0G 40G 12% /
devtmpfs 16G 0 16G 0% /dev
tmpfs 16G 0 16G 0% /dev/shm
tmpfs 16G 9.6M 16G 1% /run
tmpfs 16G 0 16G 0% /sys/fs/cgroup
/dev/sda1 1014M 177M 838M 18% /boot
/dev/mapper/data_vg-data_lv 2.0T 81M 1.9T 1% /data
tmpfs 3.2G 16K 3.2G 1% /run/user/42
tmpfs 3.2G 0 3.2G 0% /run/user/0
可知 2T 挂载在 data 目录下,所以接下来的部署主要在 data 目录下进行。
1.1.3 检测网络环境
[root@node1 ~]# ping 202.108.22.5
PING 202.108.22.5 (202.108.22.5) 56(84) bytes of data.
^C
--- 202.108.22.5 ping statistics ---
36 packets transmitted, 0 received, 100% packet loss, time 34999ms
Ping外网百度IP,结果失败,说明内网环境。
[root@node1 ~]# systemctl status firewalld.service
● firewalld.service - firewalld - dynamic firewall daemon
Loaded: loaded (/usr/lib/systemd/system/firewalld.service; disabled; vendor preset: enabled)
Active: inactive (dead)
Docs: man:firewalld(1)
4月 21 09:06:52 node1 systemd[1]: Starting firewalld - dynamic firewall daemon...
4月 21 09:06:53 node1 systemd[1]: Started firewalld - dynamic firewall daemon.
4月 21 10:10:21 node1 systemd[1]: Stopping firewalld - dynamic firewall daemon...
4月 21 10:10:21 node1 systemd[1]: Stopped firewalld - dynamic firewall daemon.
查看防火墙状态,关闭即可。
1.2 配置环境
1.2.1 配置Host别名
[root@node1 home]# vi /etc/hosts
192.168.123.156 node1
192.168.123.157 node2
192.168.123.158 node3
1.2.2 配置免密登录
参考网址:https://www.cnblogs.com/fisher01/p/13721418.html
[root@node1 home]# ssh-keygen
Generating public/private rsa key pair.
Enter file in which to save the key (/root/.ssh/id_rsa):
Enter passphrase (empty for no passphrase):
Enter same passphrase again:
Your identification has been saved in /root/.ssh/id_rsa.
Your public key has been saved in /root/.ssh/id_rsa.pub.
The key fingerprint is:
SHA256:149XI3irZ4EF4q0Rnj5Ux5WANKW6dFO/kFQN7xpDq6g root@node1
The key's randomart image is:
+---[RSA 2048]----+
| .o+o++o|
| o +oo.o.|
| o *.oo. .|
| *.o+ooo |
| So+++=+oo|
| .=ooo=+=o|
| .o o.=. |
| . .+ |
| E .o |
+----[SHA256]-----+
[root@node1 home]# cat /root/.ssh/id_rsa.pub >> authorized_keys
[root@node1 home]# ssh-copy-id 192.168.123.157
/usr/bin/ssh-copy-id: INFO: Source of key(s) to be installed: "/root/.ssh/id_rsa.pub"
/usr/bin/ssh-copy-id: INFO: attempting to log in with the new key(s), to filter out any that are already installed
/usr/bin/ssh-copy-id: INFO: 1 key(s) remain to be installed -- if you are prompted now it is to install the new keys
root@192.168.123.157's password:
Number of key(s) added: 1
Now try logging into the machine, with: "ssh '192.168.123.157'"
and check to make sure that only the key(s) you wanted were added.
[root@node1 home]# ssh-copy-id 192.168.123.158
1.2.3 配置JDK
参考网址:https://blog.csdn.net/love3765/article/details/88783126
[root@node1 ~]# java -version
openjdk version "1.8.0_181"
OpenJDK Runtime Environment (build 1.8.0_181-b13)
OpenJDK 64-Bit Server VM (build 25.181-b13, mixed mode)
检测安装包:
[root@node1 ~]# rpm -qa | grep java
javapackages-tools-3.4.1-11.el7.noarch
tzdata-java-2018e-3.el7.noarch
python-javapackages-3.4.1-11.el7.noarch
java-1.8.0-openjdk-1.8.0.181-7.b13.el7.x86_64
java-1.7.0-openjdk-1.7.0.191-2.6.15.5.el7.x86_64
java-1.7.0-openjdk-headless-1.7.0.191-2.6.15.5.el7.x86_64
java-1.8.0-openjdk-headless-1.8.0.181-7.b13.el7.x86_64
卸载openjdk:
[root@node1 ~]# rpm -e --nodeps tzdata-java-2018e-3.el7.noarch
[root@node1 ~]# rpm -e --nodeps java-1.8.0-openjdk-1.8.0.181-7.b13.el7.x86_64
[root@node1 ~]# rpm -e --nodeps java-1.7.0-openjdk-1.7.0.191-2.6.15.5.el7.x86_64
[root@node1 ~]# rpm -e --nodeps java-1.7.0-openjdk-headless-1.7.0.191-2.6.15.5.el7.x86_64
[root@node1 ~]# rpm -e --nodeps java-1.8.0-openjdk-headless-1.8.0.181-7.b13.el7.x86_64
验证卸载结果:
[root@node1 ~]# rpm -qa | grep java
javapackages-tools-3.4.1-11.el7.noarch
python-javapackages-3.4.1-11.el7.noarch
创建jdk目录:
[root@node1 ~]# mkdir /usr/local/java
上传jdk到该目录,然后远程复制到其他节点:
[root@node1 java]# scp /usr/local/java/jdk-8u291-linux-x64.tar.gz root@node2:/usr/local/java
jdk-8u291-linux-x64.tar.gz 100% 138MB 138.2MB/s 00:01
解压:
[root@node1 java]# tar -xf jdk-8u291-linux-x64.tar.gz
修改环境变量:
[root@node1 java]# vi /etc/profile
export JAVA_HOME=/usr/local/java/jdk1.8.0_291
export JRE_HOME=${JAVA_HOME}/jre
export CLASSPATH=.:${JAVA_HOME}/lib:${JRE_HOME}/lib
export PATH=${JAVA_HOME}/bin:$PATH
[root@node1 java]# source /etc/profile
[root@node1 java]# java -version
java version "1.8.0_291"
Java(TM) SE Runtime Environment (build 1.8.0_291-b10)
Java HotSpot(TM) 64-Bit Server VM (build 25.291-b10, mixed mode)
配置成功后,删除压缩包:
[root@node1 java]# rm -rf jdk-8u291-linux-x64.tar.gz
1.2.4 配置时间同步
参考网址:https://blog.csdn.net/apache2tomcat/article/details/89477732
现场时钟服务器为192.168.123.10
[root@node1 java]# ntpdate 192.168.123.10
21 Apr 15:01:19 ntpdate[23087]: adjust time server 10.10.10.53 offset -0.000252 sec
配置定时同步任务:
[root@node1 java]# crontab -e
* */1 * * * ntpdate 192.168.123.10
[root@node1 java]# /bin/systemctl reload crond.service
[root@node1 java]# crontab -l
* */1 * * * ntpdate 192.168.123.10
[root@node1 java]# /bin/systemctl start crond.service
2. 部署Hadoop高可用集群
参考网址:https://blog.csdn.net/qq_37554565/article/details/90411923
2.1 节点规划
host | namenode | datanode | resourcemanager | nodemanager | journalnode | DFSZKFailOverController |
---|---|---|---|---|---|---|
node1 | √ | √ | √ | √ | √ | |
node2 | √ | √ | √ | √ | √ | √ |
node3 | √ | √ | √ | √ |
2.2 目录规划
[root@node1 data]# mkdir /data/app
[root@node1 data]# mkdir /data/app/hadoop
由于上文说到现场的磁盘挂载在了data目录下,所以本文及以后的文章均在data目录下进行,当然推荐在usr目录下进行。
2.3 部署Zookeeper
本文使用的zk版本为3.4.14
2.3.1 上传、分发、解压
[root@node1 hadoop]# scp /data/app/hadoop/zookeeper-3.4.14.tar.gz root@node2:/data/app/hadoop
[root@node1 hadoop]# scp /data/app/hadoop/zookeeper-3.4.14.tar.gz root@node3:/data/app/hadoop
[root@node1 hadoop]# tar -zxf zookeeper-3.4.14.tar.gz
2.3.2 修改配置文件
[root@node1 hadoop]# mv zookeeper-3.4.14 zookeeper
[root@node1 hadoop]# cd zookeeper/conf/
[root@node1 conf]# mv zoo_sample.cfg zoo.cfg
dataDir=/data/app/hadoop/zookeeper/data
server.0=node1:2888:3888
server.1=node2:2888:3888
server.2=node3:2888:3888
2.3.3 创建myid
(node1是0,nide2是1,node3是2)
[root@node1 zookeeper]# mkdir data
[root@node1 zookeeper]# cd data
[root@node1 data]# vi myid
0
2.3.4 配置环境变量
[root@node1 data]# vi /etc/profil
export ZOOKEEPER_HOME=/data/app/hadoop/zookeeper
export PATH=${JAVA_HOME}/bin:$PATH:$ZOOKEEPER_HOME/bin
[root@node1 data]# source /etc/profil
2.3.5 启动
[root@node1 ~]# zkServer.sh start
ZooKeeper JMX enabled by default
Using config: /data/app/hadoop/zookeeper/bin/../conf/zoo.cfg
Starting zookeeper ... STARTED
[root@node1 ~]# zkServer.sh status
ZooKeeper JMX enabled by default
Using config: /data/app/hadoop/zookeeper/bin/../conf/zoo.cfg
Mode: follower
此时,node2 为leader。删除所有节点的压缩包。
[root@node1 hadoop]# rm -rf zookeeper-3.4.14.tar.gz
2.4 部署Hadoop
本文使用的Hadoop版本为2.7.7。
2.4.1 上传、分发、解压
[root@node1 hadoop]# scp /data/app/hadoop/hadoop-2.7.7.tar.gz root@node2:/data/app/hadoop
[root@node1 hadoop]# scp /data/app/hadoop/hadoop-2.7.7.tar.gz root@node3:/data/app/hadoop
[root@node1 hadoop]# tar -zxf hadoop-2.7.7.tar.gz
2.4.2 配置环境变量
[root@node1 hadoop]# vi /etc/profile
export HADOOP_HOME=/data/app/hadoop/hadoop-2.7.7
export HADOOP_CONF_DIR=/data/app/hadoop/hadoop-2.7.7/etc/hadoop
export PATH=${JAVA_HOME}/bin:$PATH:$ZOOKEEPER_HOME/bin:$HADOOP_HOME/bin:$HADOOP_HOME/sbin
[root@node1 hadoop]# source /etc/profile
2.4.3 配置hadoop-env.sh文件
[root@node1 hadoop]# vi /data/app/hadoop/hadoop-2.7.7/etc/hadoop/hadoop-env.sh
2.4.4 配置yarn-env.sh文件
[root@node1 hadoop]# vi /data/app/hadoop/hadoop-2.7.7/etc/hadoop/yarn-env.sh
2.4.5 配置core-site.xml文件
[root@node1 hadoop]# vi /data/app/hadoop/hadoop-2.7.7/etc/hadoop/core-site.xml
<configuration>
<!--用来指定hdfs的老大,ns为固定属性名,表示两个namenode -->
<property>
<name>fs.defaultFS</name>
<value>hdfs://ns</value>
</property>
<!--用来指定hadoop运行时产生的存放目录 -->
<property>
<name>hadoop.tmp.dir</name>
<value>/data/app/hadoop/hadoop-2.7.7/tmp</value>
</property>
<!--流文件的缓冲区单位KB-->
<property>
<name>io.file.buffer.size</name>
<value>4096</value>
</property>
<!--执行zookeeper地址 -->
<property>
<name>ha.zookeeper.quorum</name>
<value>node1:2181,node2:2181,node3:2181</value>
</property>
</configuration>
2.4.6 配置hdfs-site.xml
[root@node1 hadoop]# vi /data/app/hadoop/hadoop-2.7.7/etc/hadoop/hdfs-site.xml
<configuration>
<!--执行hdfs的nameservice为ns,和core-site.xml保持一致-->
<property>
<name>dfs.nameservices</name>
<value>ns</value>
</property>
<!--ns下有两个namenode,分别是nn1,nn2-->
<property>
<name>dfs.ha.namenodes.ns</name>
<value>nn1,nn2</value>
</property>
<!--nn1的RPC通信地址-->
<property>
<name>dfs.namenode.rpc-address.ns.nn1</name>
<value>node1:9000</value>
</property>
<!--nn1的http通信地址-->
<property>
<name>dfs.namenode.http-address.ns.nn1</name>
<value>node1:50070</value>
</property>
<!--nn2的RPC通信地址-->
<property>
<name>dfs.namenode.rpc-address.ns.nn2</name>
<value>node2:9000</value>
</property>
<!--nn2的http通信地址-->
<property>
<name>dfs.namenode.http-address.ns.nn2</name>
<value>node2:50070</value>
</property>
<!--指定namenode的元数据在JournalNode上的存放位置,这样,namenode2可以 从jn集群里获取
最新的namenode的信息,达到热备的效果-->
<property>
<name>dfs.namenode.shared.edits.dir</name>
<value>qjournal://node1:8485;node2:8485;node3:8485/ns</value>
</property>
<!--指定JournalNode存放数据的位置-->
<property>
<name>dfs.journalnode.edits.dir</name>
<value>/data/app/hadoop/hadoop-2.7.7/journal</value>
</property>
<!--开启 namenode 故障时自动切换-->
<property>
<name>dfs.ha.automatic-failover.enabled.ns</name>
<value>true</value>
</property>
<!--配置切换的实现方式-->
<property>
<name>dfs.client.failover.proxy.provider.ns</name>
<value>org.apache.hadoop.hdfs.server.namenode.ha.ConfiguredFailoverProxyProvider</value>
</property>
<!--配置隔离机制-->
<property>
<name>dfs.ha.fencing.methods</name>
<value>sshfence</value>
</property>
<!--配置隔离机制的ssh登录秘钥所在的位置-->
<property>
<name>dfs.ha.fencing.ssh.private-key-files</name>
<value>/root/.ssh/id_rsa</value>
</property>
<!--配置namenode数据存放的位置,可以不配置,如果不配置,默认用的是core-site.xml里配置的hadoop.tmp.dir的路径-->
<property>
<name>dfs.namenode.name.dir</name>
<value>file:///data/app/hadoop/hadoop-2.7.7/tmp/namenode</value>
</property>
<!--配置datanode数据存放的位置,可以不配置,如果不配置,默认用的是core-site.xml里配置的hadoop.tmp.dir的路径-->
<property>
<name>dfs.datanode.data.dir</name>
<value>file:///data/app/hadoop/hadoop-2.7.7/tmp/datanode</value>
</property>
<!--配置block副本数量-->
<property>
<name>dfs.replication</name>
<value>3</value>
</property>
<!--设置 hdfs 的操作权限, false 表示任何用户都可以在 hdfs 上操作文件-->
<property>
<name>dfs.permissions</name>
<value>false</value>
</property>
</configuration>
2.4.7 配置mapred-site.xml文件
[root@node1 hadoop]# mv mapred-site.xml.template mapred-site.xml
[root@node1 hadoop]# vi /data/app/hadoop/hadoop-2.7.7/etc/hadoop/mapred-site.xml
<configuration>
<!-- 指定mr框架为yarn方式 -->
<property>
<name>mapreduce.framework.name</name>
<value>yarn</value>
</property>
</configuration>
2.4.8 配置yarn-site.xml文件
[root@node1 hadoop]# vi /data/app/hadoop/hadoop-2.7.7/etc/hadoop/yarn-site.xml
<configuration>
<!-- Site specific YARN configuration properties -->
<!--开启YARN HA -->
<property>
<name>yarn.resourcemanager.ha.enabled</name>
<value>true</value>
</property>
<!--指定两个 resourcemanager 的名称-->
<property>
<name>yarn.resourcemanager.ha.rm-ids</name>
<value>rm1,rm2</value>
</property>
<!--配置rm1,rm2的主机-->
<property>
<name>yarn.resourcemanager.hostname.rm1</name>
<value>node3</value>
</property>
<property>
<name>yarn.resourcemanager.hostname.rm2</name>
<value>node2</value>
</property>
<!--开启yarn恢复机制-->
<property>
<name>yarn.resourcemanager.recovery.enabled</name>
<value>true</value>
</property>
<!--配置zookeeper的地址-->
<property>
<name>yarn.resourcemanager.zk-address</name>
<value>node1:2181,node2:2181,node3:2181</value>
<description>For multiple zk services, separate them with comma</description>
</property>
<!--指定YARN HA的名称-->
<property>
<name>yarn.resourcemanager.cluster-id</name>
<value>yarn-ha</value>
</property>
<property>
<!--指定yarn的老大resoucemanager的地址-->
<name>yarn.resourcemanager.hostname</name>
<value>node1</value>
</property>
<!--NodeManager 获取数据的方式-->
<property>
<name>yarn.nodemanager.aux-services</name>
<value>mapreduce_shuffle</value>
</property>
<property>
<name>yarn.nodemanager.aux-services.mapreduce.shuffle.class</name>
<value>org.apache.hadoop.mapred.ShuffleHandler</value>
</property>
<property>
<name>yarn.nodemanager.resource.cpu-vcores</name>
<value>32</value>
</property>
</configuration>
2.4.9 配置slaves文件
[root@node1 hadoop]# vi /data/app/hadoop/hadoop-2.7.7/etc/hadoop/slaves
node1
node2
node3
2.4.10 创建配置目录
在 /data/app/hadoop/hadoop-2.7.7/下创建 tmp目录
[root@node1 hadoop-2.7.7]# mkdir tmp
在 /data/app/hadoop/hadoop-2.7.7/ 下创建 journal
[root@node1 hadoop-2.7.7]# mkdir journal
在 /data/app/hadoop/hadoop-2.7.7/tmp 下创建 namenode 和dataname
[root@node1 hadoop-2.7.7]# cd tmp
[root@node1 tmp]# mkdir namenode
[root@node1 tmp]# mkdir datanode
2.4.11 通过scp 命令 将hadoop传给另外两台服务器,并配置环境变量
[root@node1 hadoop]# scp -r hadoop-2.7.7/ root@node2:/data/app/hadoop/
[root@node1 hadoop]# scp -r hadoop-2.7.7/ root@node3:/data/app/hadoop/
2.4.12 启动进程
1.确认所有节点的Zookeeper是否启动:
[root@node1 tmp]# zkServer.sh status
2.在某一个namenode节点(node1或者node2)执行如下命令,创建命名空间
[root@node1 tmp]# hdfs zkfc -formatZK
3.在每个journalnode节点(node1和node2和node3)用如下命令启动journalnode
[root@node1 hadoop-2.7.7]# sbin/hadoop-daemon.sh start journalnode
4.在主namenode节点(node1)格式化namenode和journalnode目录
[root@node1 hadoop-2.7.7]# hdfs namenode -format ns
5.在主namenode节点(node1)启动namenode进程
[root@node1 hadoop-2.7.7]# sbin/hadoop-daemon.sh start namenode
6.在备namenode节点(node2)执行第一行命令,这个是把备namenode节点的目录格式化并把元数据从主namenode节点copy过来,并且这个命令不会把journalnode目录再格式化了!然后用第二个命令启动备namenode进程!
[root@node1 hadoop-2.7.7]# hdfs namenode -bootstrapStandby
[root@node1 hadoop-2.7.7]# sbin/hadoop-daemon.sh start namenode
7.在两个namenode节点(node1和node2)都执行以下命令
[root@node1 hadoop-2.7.7]# sbin/hadoop-daemon.sh start zkfc
8.在所有datanode节点都执行以下命令启动datanode
[root@node1 hadoop-2.7.7]# sbin/hadoop-daemon.sh start datanode
9.当前所有节点进程
node1的进程
[root@node1 hadoop-2.7.7]# jps
25296 QuorumPeerMain
22337 JournalNode
22865 DFSZKFailoverController
22646 NameNode
23115 Jps
23006 DataNode
node2的进程
[root@node2 hadoop-2.7.7]# jps
22289 NameNode
22450 DFSZKFailoverController
22006 JournalNode
22572 DataNode
22716 Jps
24910 QuorumPeerMain
node3的进程
[root@node3 hadoop-2.7.7]# jps
22240 DataNode
24867 QuorumPeerMain
21948 JournalNode
22381 Jps
10.启动yarn的resourcemanager的进程
在node3上启动resourcemanager
[root@node3 sbin]# sh yarn-daemon.sh start resourcemanager
在node2上启动resourcemanager
[root@node2 sbin]# sh yarn-daemon.sh start resourcemanager
11.所有节点上启动nodemanager进程
[root@node1 sbin]# sh yarn-daemon.sh start nodemanager
12.当前所有节点的进程
node1:
[root@node1 sbin]# jps
25296 QuorumPeerMain
22337 JournalNode
22865 DFSZKFailoverController
23585 Jps
22646 NameNode
23006 DataNode
23358 NodeManager
node2:
[root@node2 sbin]# jps
22289 NameNode
22450 DFSZKFailoverController
22006 JournalNode
22967 ResourceManager
23067 NodeManager
22572 DataNode
24910 QuorumPeerMain
23326 Jps
node3:
[root@node3 sbin]# jps
22240 DataNode
24867 QuorumPeerMain
23078 Jps
21948 JournalNode
22525 ResourceManager
22845 NodeManager
13.查看resourcemanager的主从
[root@node3 sbin]# yarn rmadmin -getServiceState rm1
active
[root@node3 sbin]# yarn rmadmin -getServiceState rm2
standby
2.4.13 查看相关网页
1.http://192.168.123.156:50070
2.http://192.168.123.157:50070
3.http://192.168.123.158:8088
2.4.14 集群停止
在hadoop的sbin下sh stop-all.sh 关闭集群全部实例。
sh stop-all.sh
如有残余,可在相应节点执行
sh hadoop-daemon.sh stop DataNode
sh hadoop-daemon.sh stop NameNode
sh hadoop-daemon.sh stop JournalNode
或以下快捷命令:
sh stop-all.sh
sh stop-dfs.sh
sh stop-yarn.sh
yarn-daemon.sh stop resourcemanager
2.4.15 集群启动
[root@node1 sbin]# sh start-all.sh
[root@node1 sbin]# cd ..
[root@node1 hadoop-2.7.7]# sbin/hadoop-daemon.sh start zkfc
[root@node2 bin]# cd /data/app/hadoop/hadoop-2.7.7/
[root@node2 hadoop-2.7.7]# sbin/hadoop-daemon.sh start zkfc
[root@node2 hadoop-2.7.7]# cd sbin/
[root@node2 sbin]# sh yarn-daemon.sh start resourcemanager
[root@node3 ~]# cd /data/app/hadoop/hadoop-2.7.7/sbin/
[root@node3 sbin]# sh yarn-daemon.sh start resourcemanager
2.5 调优Hadoop
2.5.1 优化调度队列
修改yarn-site.xml:
[root@node3 hadoop]# vi yarn-site.xml
<!-- 指定使用fairScheduler的调度方式 -->
<property>
<name>yarn.resourcemanager.scheduler.class</name>
<value>org.apache.hadoop.yarn.server.resourcemanager.scheduler.fair.FairScheduler</value>
</property>
<!-- 指定配置文件路径 -->
<property>
<name>yarn.scheduler.fair.allocation.file</name>
<value>/data/app/hadoop/hadoop-2.7.7/etc/hadoop/fair-scheduler.xml</value>
</property>
<!-- 是否启用资源抢占,如果启用,那么当该队列资源使用
yarn.scheduler.fair.preemption.cluster-utilization-threshold 这么多比例的时候,就从其他空闲队列抢占资源
-->
<property>
<name>yarn.scheduler.fair.preemption</name>
<value>true</value>
</property>
<property>
<name>yarn.scheduler.fair.preemption.cluster-utilization-threshold</name>
<value>0.8f</value>
</property>
<!-- 默认提交到default队列 -->
<property>
<name>yarn.scheduler.fair.user-as-default-queue</name>
<value>true</value>
</property>
<!-- 如果提交一个任务没有到任何的队列,是否允许创建一个新的队列,设置false不允许 -->
<property>
<name>yarn.scheduler.fair.allow-undeclared-pools</name>
<value>false</value>
</property>
添加fair-scheduler.xml:
[root@node3 hadoop]# vi fair-scheduler.xml
<?xml version="1.0"?>
<allocations>
<!-- users max running apps -->
<userMaxAppsDefault>30</userMaxAppsDefault>
<!-- 定义队列 -->
<queue name="root">
<minResources>512mb,4vcores</minResources>
<maxResources>102400mb,100vcores</maxResources>
<maxRunningApps>100</maxRunningApps>
<weight>1.0</weight>
<schedulingMode>fair</schedulingMode>
<aclSubmitApps> </aclSubmitApps>
<aclAdministerApps> </aclAdministerApps>
<queue name="default">
<minResources>1024mb,4vcores</minResources>
<maxResources>30720mb,30vcores</maxResources>
<maxRunningApps>100</maxRunningApps>
<schedulingMode>fair</schedulingMode>
<weight>5.0</weight>
<!-- 所有的任务如果不指定任务队列,都提交到default队列里面来 -->
<aclSubmitApps>*</aclSubmitApps>
</queue>
<!--
weight
资源池权重
aclSubmitApps
允许提交任务的用户名和组;
格式为:用户名 用户组
当有多个用户时候,格式为:用户名1,用户名2 用户名1所属组,用户名2所属组
aclAdministerApps
允许管理任务的用户名和组;
格式同上。
-->
<queue name="hadoop">
<minResources>512mb,4vcores</minResources>
<maxResources>20480mb,20vcores</maxResources>
<maxRunningApps>100</maxRunningApps>
<schedulingMode>fair</schedulingMode>
<weight>2.0</weight>
<aclSubmitApps>hadoop</aclSubmitApps>
<aclAdministerApps>hadoop</aclAdministerApps>
</queue>
<queue name="develop">
<minResources>512mb,4vcores</minResources>
<maxResources>20480mb,20vcores</maxResources>
<maxRunningApps>100</maxRunningApps>
<schedulingMode>fair</schedulingMode>
<weight>1</weight>
<aclSubmitApps>develop</aclSubmitApps>
<aclAdministerApps>develop</aclAdministerApps>
</queue>
<queue name="test1">
<minResources>512mb,4vcores</minResources>
<maxResources>20480mb,20vcores</maxResources>
<maxRunningApps>100</maxRunningApps>
<schedulingMode>fair</schedulingMode>
<weight>1</weight>
<aclSubmitApps>test1,hadoop,develop test1</aclSubmitApps>
<aclAdministerApps>test1 group_businessC,supergroup</aclAdministerApps>
</queue>
</queue>
</allocations>
重启yarn:
[root@node1 sbin]# sh stop-yarn.sh
[root@node1 sbin]# sh start-yarn.sh
扫描二维码获取
更多精彩
DataLink
数据中台
以上是关于第一篇:Centos7 Hadoop 2.7.7 集群部署的主要内容,如果未能解决你的问题,请参考以下文章
centos7 + hadoop 2.7.7 完全分布式搭建