神经网络算法实现

Posted 百林哲

tags:

篇首语:本文由小常识网(cha138.com)小编为大家整理,主要介绍了神经网络算法实现相关的知识,希望对你有一定的参考价值。

AlphaGo在人机大战中战胜李世乭让深度学习这个名词在大众口中广为传播,深度学习的强大,也让其增加了一层神秘色彩,似乎这是名校博士才能理解的算法。虽然相关的论文自己也无法看懂,然而,在网络查阅了无数资料之后,才发现如果不去纠结理论的证明,只关心结论的话,神经网络算法也并非高不可攀。


什么是神经网络算法

在解释什么是神经网络之前,我们先明确几个机器学习中的术语:特征,样本,监督学

  • 样本:可以用于学习的个体,我们可以获得这些个体的其某些信息,并且我们已知这些个体的类别

  • 特征:同一属性在不同个体所体现出来的特点,在神经网络中,特征应该是易于提取的

  • 监督学习:根据样本中个体的特征以及类别,然后创建我们的判定规则,并依靠这些调查所得信息,调整我们的规则,使得规则的预测结果尽可能接近我们的样本,这样,我们利用这个规则和新个体的特征信息,来判定其所属分类


举个例子,我们想要构建一套性别识别算法,而我们能够获得的特征信息只有三种:这个人不是长头发;衣服颜色是红色;身高是否超过了178cm。那以一个正常成年人的思维,我们应该采用什么策略来判断这个人的性别呢?


我想大部分人都会采用和我一样的策略:依据我们平时的经验,一个人如果留长头发,很大可能这个人是女的,而一个人穿红色衣服,很难判断其性别,一个人身高超过175cm,在中国人里面可能都属于偏高的,而依据我们的经验,男性的平均身高要大于女性,所以单纯通过身高这个信息,我们推断这个人是男性的可能性较大。


以上推测过程中,我们对每一个条件的推断都基于一个词,经验,这里的经验就是我们长期以来观察身边的人的特征所留下的记忆。而我们的推测结果主要用了一个词汇,可能性,其代表基于某条已知信息推测出某个未知结论的概率。


科学家将我们的思维方法归纳为信息在神经元之间的传导过程,这些神经元每一个都处理及简单的信息,但是通过无数个神经元之间错综复杂的连接传导,使得我们的大脑能够处理及其复杂的信息。神经网络算法就是对我们大脑思维方式的抽象,比如在上面的例子中,我们将每一个特征,输入到一个神经元,这些接受输入的神经元构成了第一层神经网络,也叫做输入层,我们的目标是判断一个人的性别,是男是女分属于两个不同类别,我们将其抽象为一个神经元,这个神经元构成神经网络的输出层,每一个特征(输入层神经元),都有到分类(输出层神经元)的连接,也就是从特征转化为分类的概率(权重),通过综合各个连接的权重,传送到输出神经元。





 以上便是神经网络算法最简单的模型,神经网络算法的学习过程中,首先随机初始化各层神经元之间的连接权重(上文中的可能性),然后输入样本进行预测,根据预测的误差,调整神经网络中的权重,完成这个过程之后,我们的神经网络就训练好了。所以,神经网络训练的结果,就是得到各个连接的权重(经验),这样,一旦有新的数据输入神经网络的时候,就能推测出其分类了。


神经网络算法实例

问题定义

还是用上面的预测性别的例子,现在将其数学化,假设在一群人中,我们只能获得每个人的三个特征:

     特征1:长发(1)还是短发(0)

     特征2:衣服颜色是红色(1)还是不是红色(0)

     特征3:身高大于178cm(1)还是不超过178(0)


假设我们只知道其中四个人的性别(男:0,女:1),我们需要依据这四个人的三个特征以及性别训练一个神经网络,用于预测一个人的性别。样本信息如下:


头发 衣服 身高 性别
0 0 1 0
1 1 1 1
1 0 1 1
0 1 1 0


下面我们先实现最简单的单层神经网络。我们用X表示输入的特征向量,由于每个样本有三个特征,一共有四个样本,所以我们定义一个4X3的矩阵,每一行代表一个样本,如下代码所示。其中,NumPy是Python语言的一个扩充程序库。支持高级大量的维度数组与矩阵运算,此外也针对数组运算提供大量的数学函数库。


神经网络算法实现


而四个样本对应输出(分类结果)我们用一个1X4的矩阵表示。“.T”为转置函数,转置后变成了4X1的矩阵。同我们的输入一致,每一行是一个训练实例,而每一列(仅有一列)对应一个输出节点。因此,这个网络还有三个输入和一个输出。代码如下所示:


神经网络算法实现

训练开始之前,我们先要初始化神经网络的权重,由于输入层有三个神经元,而输出结果只有一个神经元,所以权重矩阵为3X1。由于一般初始化权重是随机选择的,因此要为随机数设定产生的种子,如下第一行代码所示。这样可以使每次训练开始时,得到的训练随机数都是一致的。这样便于观察策略变动是如何影响网络训练的,消除初始权重的影响。
 

对于第二行代码,这里由于我们要将随机初始化的权重矩阵均值设定为 0 (至于权重矩阵的初始化,大家有兴趣的话,请查看相关资料)。因此使用第二行代码来计算syn0(第一层网络间的权重矩阵),如下所示:


神经网络算法实现


为了将输出的权重归一化,定义一个sigmoid函数,其定义为:

神经网络算法实现

sigmoid函数可以用以下Python代码实现,其中,deriv参数表示是否计算的是其导数值:


神经网络算法实现


其函数图像如下图所示:神经网络算法实现sigmoid函数的特点是,其导数可以用其自身表示出来,在计算的时候,我们只需要计算出其函数值,就可以计算出其导数值,从而可以减少浮点运算次数,提高效率,其导数如下:


神经网络算法实现


接下来,我们开始训练神经网络:


神经网络算法实现


我们的训练过程迭代10000次,以得到一个较优的结果,每一次迭代的过程可以描述为:


1、计算输入层的加权和,即用输入矩阵L0乘以权重矩阵syn0,并通

过sigmid函数进行归一化。得到输出结果l1;

2、计算输出结果L1与真实结果y之间的误差L1_error;

3、计算权重矩阵的修正L1_delta,即用误差乘以sigmoid

4、用L1_delta更新权重矩阵syn0


此处着重解释 下第三步,这里利用的是梯度下降法,算法的原理我们暂不深究,只需要明白其目的是为了使迭代后的误差逐渐减小即可。


一次训练过程的参数更新如下图所示:


神经网络算法实现


由于我们的输入X中一共有四个样本,我们进行“批量的训练”,所以其过程类似于下图所示:

神经网络算法实现

在上述代码中,我们通过10000次迭代,我们得到的输出结果如下:


神经网络算法实现


可以看出,syn0的第一个元素,也就是第一个输入特征(长发)的权重最大,而第二个和第三个特征都很小,所以神经网络学习的结果是加重第一个特征的权重,而其他两个特征对于是女性这个推测的贡献较小,所以减小其权重。为了验证训练结果,我们加入两组新数据,(短头发,红衣服,矮个子),(长头发,不是红衣服,矮个子),并用神经网络来进行分类:


神经网络算法实现


计算结果如下:


神经网络算法实现


二层神经网络

上面的例子中,我们只用了一层神经网络,这只能解决线性问题,而现实中,一个孤立的特征并不是对应一个分类,还是用上面的例子说明:上面的问题中,我们假定了长头发是女性的概率一定大于男性,高个子是男性的概率一定大于女性,这种假设中,特征和分类是一种确定的关系,而特征之间没有依赖关系。而现在,我修改这种假设,在穿红衣服的人群中,长头发更可能是女性,而在穿其他颜色的衣服中,短头发更有可能是女性,此时,我们上面的神经网络模型就失效了,因为我们无法直接建头发这个输入特征到性别这个输入的直接联系。
  

为了解决上面的问题,我们需要在加入一层神经网络,将输入层的特征进行组合,然后在传导到输出层,这就是二层神经网络的模型,其示意图如下:


神经网络算法实现

中间加入的这一层佳作隐含层,由于这一层的加入,我们多了一层传导,所以初始化的时候需要再加入一个权重矩阵:


神经网络算法实现


两层神经网络的学习更新过程如下:


神经网络算法实现


结合前面的单层神经网络的实现,就很容易理解上面的代码了,代码中,L0的输出没有直接作为最终输出层,而是传导给了L2层,L2层以相同的方式传导到输出层。而更新权重的时候,采用的是相反的过程,先依据L2输出的误差,更新syn1,再用L2的误差乘以syn1,作为L1层的误差,最后用同样的方法更新第一层权重矩阵syn0


结语


这篇文章以最简单的方式构建了一个基本的神经网络,虽然离实用还相去甚远,但是已经初现神经网络的雏形框架,如果需要构建一个实用级别的神经网络,还需要加入一些其他的功能,原作者建议我们从以下这些概念开始入手,优化我们的神经络):


  • Alpha

  • Bias Units

  • Mini-Batches

  • Delta Trimming

  • Parameterized Layer Sizes

  • Regularization

  • Dropout

  • Momentum

  • Batch Normalization

  • GPU Compatability

  • 其他脑洞






以上是关于神经网络算法实现的主要内容,如果未能解决你的问题,请参考以下文章

神经网络算法实现

JAVA实现BP神经网络算法

使用Python scikit-learn 库实现神经网络算法

机器学习算法及代码实现–神经网络

神经网络——Python实现BP神经网络算法(理论+例子+程序)

JAVA实现BP神经网络算法