动态规划:最长重复子数组

Posted 代码随想录

tags:

篇首语:本文由小常识网(cha138.com)小编为大家整理,主要介绍了动态规划:最长重复子数组相关的知识,希望对你有一定的参考价值。

我已经将刷题指南全部整理到了Github :https://github.com/youngyangyang04/leetcode-master,方便大家在电脑上阅读,这个仓库每天都会更新,大家快去给一个star支持一下吧!

同时我在B站更新算法视频,B站同名:代码随想录

718. 最长重复子数组

题目链接:https://leetcode-cn.com/problems/maximum-length-of-repeated-subarray/

给两个整数数组 A 和 B ,返回两个数组中公共的、长度最长的子数组的长度。

示例:

输入:
A: [1,2,3,2,1]
B: [3,2,1,4,7]
输出:3
解释:
长度最长的公共子数组是 [3, 2, 1] 。
  提示:

  • 1 <= len(A), len(B) <= 1000
  • 0 <= A[i], B[i] < 100

思路

注意题目中说的子数组,其实就是连续子序列。这种问题动规最拿手,动规五部曲分析如下:

  1. 确定dp数组(dp table)以及下标的含义

dp[i][j] :以下标i - 1为结尾的A,和以下标j - 1为结尾的B,最长重复子数组长度为dp[i][j]。

此时细心的同学应该发现,那dp[0][0]是什么含义呢?总不能是以下标-1为结尾的A数组吧。

其实dp[i][j]的定义也就决定着,我们在遍历dp[i][j]的时候i 和 j都要从1开始。

那有同学问了,我就定义dp[i][j]为 以下标i为结尾的A,和以下标j 为结尾的B,最长重复子数组长度。不行么?

行倒是行!但实现起来就麻烦了一些,大家看下面的dp数组状态图就明白了。

  1. 确定递推公式

根据dp[i][j]的定义,dp[i][j]的状态只能由dp[i - 1][j - 1]推导出来。

即当A[i - 1] 和B[j - 1]相等的时候,dp[i][j] = dp[i - 1][j - 1] + 1;

根据递推公式可以看出,遍历i 和 j 要从1开始!

  1. dp数组如何初始化

根据dp[i][j]的定义,dp[i][0] 和dp[0][j]其实都是没有意义的!

但dp[i][0] 和dp[0][j]要初始值,因为 为了方便递归公式dp[i][j] = dp[i - 1][j - 1] + 1;

所以dp[i][0] 和dp[0][j]初始化为0。

举个例子A[0]如果和B[0]相同的话,dp[1][1] = dp[0][0] + 1,只有dp[0][0]初始为0,正好符合递推公式逐步累加起来。

  1. 确定遍历顺序

外层for循环遍历A,内层for循环遍历B。

那又有同学问了,外层for循环遍历B,内层for循环遍历A。不行么?

也行,一样的,我这里就用外层for循环遍历A,内层for循环遍历B了。

同时题目要求长度最长的子数组的长度。所以在遍历的时候顺便把dp[i][j]的最大值记录下来。

代码如下:

for (int i = 1; i <= A.size(); i++) {
    for (int j = 1; j <= B.size(); j++) {
        if (A[i - 1] == B[j - 1]) {
            dp[i][j] = dp[i - 1][j - 1] + 1;
        }
        if (dp[i][j] > result) result = dp[i][j];
    }
}
  1. 举例推导dp数组

拿示例1中,A: [1,2,3,2,1],B: [3,2,1,4,7]为例,画一个dp数组的状态变化,如下:

718.最长重复子数组

以上五部曲分析完毕,C++代码如下:

class Solution {
public:
    int findLength(vector<int>& A, vector<int>& B) {
        vector<vector<int>> dp (A.size() + 1vector<int>(B.size() + 10));
        int result = 0;
        for (int i = 1; i <= A.size(); i++) {
            for (int j = 1; j <= B.size(); j++) {
                if (A[i - 1] == B[j - 1]) {
                    dp[i][j] = dp[i - 1][j - 1] + 1;
                }
                if (dp[i][j] > result) result = dp[i][j];
            }
        }
        return result;
    }
};
  • 时间复杂度O(n * m) n 为A长度,m为B长度
  • 空间复杂度O(n * m)

滚动数组

在如下图中:

动态规划:最长重复子数组
718.最长重复子数组

我们可以看出dp[i][j]都是由dp[i - 1][j - 1]推出。那么压缩为一维数组,也就是dp[j]都是由dp[j - 1]推出。

也就是相当于可以把上一层dp[i - 1][j]拷贝到下一层dp[i][j]来继续用。

此时遍历B数组的时候,就要从后向前遍历,这样避免重复覆盖。

class Solution {
public:
    int findLength(vector<int>& A, vector<int>& B) {
        vector<int> dp(vector<int>(B.size() + 1, 0));
        int result = 0;
        for (int i = 1; i <= A.size(); i++) {
            for (int j = B.size(); j > 0; j--) {
                if (A[i - 1] == B[j - 1]) {
                    dp[j] = dp[j - 1] + 1;
                } else dp[j] = 0; // 注意这里不相等的时候要有赋0的操作 
                if (dp[j] > result) result = dp[j];
            }
        }
        return result;
    }
};
  • 时间复杂度O(n * m) n 为A长度,m为B长度
  • 空间复杂度O(m)

原创算法学习手册开放下载!

我已经将「代码随想录」中的二叉树、回溯算法、贪心算法、背包问题等等各个专题都整理成PDF,绝对精华,绝对通透!

先预览一下部分截图:


组队刷题可以加我微信,备注:简单自我介绍 + 组队刷题



以上是关于动态规划:最长重复子数组的主要内容,如果未能解决你的问题,请参考以下文章

5.23算法练习最长重复子数组#动态规划

算法题407:动态规划和滑动窗口解决最长重复子数组

718. 最长重复子数组-动态规划

407,动态规划和滑动窗口解决最长重复子数组

最长重复子数组

动态规划解最长公共子序列(LCS)问题 (附可打印LCS完整代码)