《推荐系统算法实践》

Posted 读享荟

tags:

篇首语:本文由小常识网(cha138.com)小编为大家整理,主要介绍了《推荐系统算法实践》相关的知识,希望对你有一定的参考价值。

为乐趣而读书 —— 毛姆


电子书栏目中,读享荟每周都会精心挑选一些电子书分享给大家。

 

那么今天为大家带来的是推荐系统算法实践


《推荐系统算法实践

黄美灵 著

电子书售价:45元

2019年9月出版


本书主要讲解推荐系统中的召回算法和排序算法,以及各个算法在主流工具Sklearn、Spark、TensorFlow等中的实现和应用。
本书中本着循序渐进的原则进行讲解。首先,介绍推荐系统中推荐算法的数学基础,推荐算法的平台、工具基础,以及具体的推荐系统。其次,讲解推荐系统中的召回算法,主要包括基于行为相似的协同过滤召回和基于内容相似的Word2vec召回,并且介绍其在Spark、TensorFlow主流工具中的实现与应用。再次,讲解推荐系统中的排序算法,包括线性模型、树模型和深度学习模型,分别介绍逻辑回归、FM、决策树、随机森林、GBDT、GBDT+LR、集成学习、深度森林、DNN、Wide & Deep、DeepFM、YouTube推荐等模型的原理,以及其在Sklearn、Spark、TensorFlow主流工具中的实现与应用。最后,介绍推荐算法的4个实践案例,帮助读者进行工程实践和应用,并且介绍如何在Notebook上进行代码开发和算法调试,以帮助读者提升工作效率。
本书适合AI、数据挖掘、大数据等领域的从业人员阅读,书中为开发者展现了推荐算法的原理、实现与应用案例。


以上是关于《推荐系统算法实践》的主要内容,如果未能解决你的问题,请参考以下文章

百度电影推荐系统比赛——初步推荐算法实践

推荐系统[八]算法实践总结V3:重排在快手短视频推荐系统中的应用and手淘信息流多兴趣多目标重排技术

推荐系统[八]算法实践总结V4:混排算法在淘宝信息流第四代混排调控框架实战,提升推荐实时性捕捉实时兴趣。

音乐推荐系统实践

推荐系统[八]算法实践总结V0:腾讯音乐全民K歌推荐系统架构及粗排设计

推荐系统[八]算法实践总结V0:腾讯音乐全民K歌推荐系统架构及粗排设计