推荐系统[八]算法实践总结V4:混排算法在淘宝信息流第四代混排调控框架实战,提升推荐实时性捕捉实时兴趣。

Posted 汀、

tags:

篇首语:本文由小常识网(cha138.com)小编为大家整理,主要介绍了推荐系统[八]算法实践总结V4:混排算法在淘宝信息流第四代混排调控框架实战,提升推荐实时性捕捉实时兴趣。相关的知识,希望对你有一定的参考价值。

相关文章推荐:

推荐系统[一]:超详细知识介绍,一份完整的入门指南,解答推荐系统相关算法流程、衡量指标和应用,以及如何使用jieba分词库进行相似推荐,业界广告推荐技术最新进展

推荐系统[二]:召回算法超详细讲解[召回模型演化过程、召回模型主流常见算法(DeepMF/TDM/Airbnb Embedding/Item2vec等)、召回路径简介、多路召回融合]

推荐系统[三]:粗排算法常用模型汇总(集合选择和精准预估),技术发展历史(向量內积,Wide&Deep等模型)以及前沿技术

推荐系统[四]:精排-详解排序算法LTR (Learning to Rank): poitwise, pairwise, listwise相关评价指标,超详细知识指南。

推荐系统[五]:重排算法详解相关概念、整体框架、常用模型;涉及用户体验[打散、多样性],算法效率[多任务融合、上下文感知]等

以上是关于推荐系统[八]算法实践总结V4:混排算法在淘宝信息流第四代混排调控框架实战,提升推荐实时性捕捉实时兴趣。的主要内容,如果未能解决你的问题,请参考以下文章

推荐系统[八]算法实践总结V3:重排在快手短视频推荐系统中的应用and手淘信息流多兴趣多目标重排技术

推荐系统[八]算法实践总结V2:排序学习框架(特征提取标签获取方式)以及京东推荐算法精排技术实战

推荐系统[八]算法实践总结V2:排序学习框架(特征提取标签获取方式)以及京东推荐算法精排技术实战

推荐系统[八]算法实践总结V0:腾讯音乐全民K歌推荐系统架构及粗排设计

推荐系统[八]算法实践总结V0:腾讯音乐全民K歌推荐系统架构及粗排设计

推荐系统[六]:混排算法简介研究现状混排技术以及MDP-DOTA信息流第三代混排调控框架,高质量项目实战。