选择障碍症患者的福音:NoSQL类型知多少
Posted 技术风向标
tags:
篇首语:本文由小常识网(cha138.com)小编为大家整理,主要介绍了选择障碍症患者的福音:NoSQL类型知多少相关的知识,希望对你有一定的参考价值。
在已经有超过225种NoSQL数据库的今天,当有数据存储需求时你知道该选哪种数据库吗?谁才能真正满足你的需要?选择障碍症犯了怎么办?
首先,你得知道它们各自的专长都是什么。下面就来探讨一下NoSQL的主要发展方向以及各自的优缺点。
面向列的DBMS是这样一种数据库管理系统,它将数据表存储为数据列而非行的形式。从物理上来说,表是列的集合,每一列从本质上来说都是只有一个字段的表。这些数据库通常用于分析系统、商业智能与分析型数据存储。
优点:
可以比较数据,因为在表的一列中,数据通常都是同种类型的。
可以通过便宜、性能一般的硬件实现高速的查询性能;由于压缩的原因,相对于关系型数据库来说,这种方式磁盘上的数据所占据的空间要少5到10倍。
缺点:
通常没有事务。
对于熟悉传统RDBMS的开发者来说存在不少限制。
典型代表:
HBase
Cassandra
Accumulo
Amazon SimpleDB
可以通过这种数据库将键值对存储到持久化存储中,随后使用键来读取值。那么对于这种初看起来用途非常有限的解决方案来说有哪些好处呢?在根据键来保存/读取值时,系统是非常高效的,因为它没有SQL处理器、索引系统以及分析系统等诸多限制。这种解决方案提供了最高效的性能,代价最低的实现以及可伸缩性。
优点:
RDBMS太慢了,SQL游标的负担过于沉重。
采用RDBMS的解决方案来存储少量数据的代价有些大。
没必要使用SQL查询、索引、触发器、存储过程、临时表、表单以及视图等等。
由于其轻量级的设计,键值数据库可以很容易实现可伸缩性以及高性能。
缺点:
关系型数据库的限制可以从底层就确保数据的完整性,而键值存储就没有这些限制,数据的完整性是由应用来控制的。在这种情况下,数据的完整性可能会由于应用代码的错误而做一些妥协。
在RDBMS中,如果模型设计良好,那么数据库的逻辑结构就能完全反映出存储数据的结构,并且与应用的结构有所不同(数据是独立于应用的)。对于键值存储来说,要想取得这种效果是非常困难的事情。
典型代表:
Amazon DynamoDB
Riak
Redis
LevelDB
Scalaris
MemcacheDB
Kyoto Cabinet
文档存储指的是用于存储、搜索与管理面向文档的信息(半结构化数据)的程序,其中心概念就是文档。具体的面向文档数据库的实现是不同的,不过总的来说,他们都会以各种标准化格式对数据(文档)进行封装与加密,主要格式有XML、YAML、JSON、BSON、PDF等等。
优点:
足够灵活的查询语言。
易于水平扩展。
缺点:
在很多时候原子性是得不到保障的。
典型代表:
MongoDB
Couchbase
CouchDB
RethinkDB
图型数据库指的是使用图结构的数据库,通过结点、边与属性来表示和存储数据。根据定义,图型数据库是一种提供了无需索引而彼此邻接的存储系统。这意味着每个元素都包含了直接指向邻接元素的指针,因此没必要再通过索引进行查找了。
优点:
对于关联数据集的查找速度更快。
可以很自然地扩展为更大的数据集,因为他们无需使用代价高昂的连接运算符。
缺点:
RDBMS可以用在更为通用的场景下,图型数据库只适合类似于图的数据。
典型代表:
Neo4j
FlockDB
InfoGrid
OrientDB
这些数据库包含了多种数据库的特性。
有两种不同的产品分组可以认为是多模的:
支持多种数据模型和用例的多模数据库。 比如说,ArangoDB宣称它拥有键值存储的好处,同时还提供了面向文档以及图型数据库的支持。
支持多种模式的通用目的的数据库。 比如说,Oracle的mysql 5.6支持SQL方式的访问,也可以通过Memcached API实现键值访问。
典型代表:
ArangoDB
Aerospike
Datomic
数据库中的数据都建模为对象、属性、方法以及类。面向对象的数据库通常适合于需要高性能数据处理的应用,这种应用一般都有非常复杂的结构。
优点:
相比于关系元组来说,对象模型最适合于展现现实世界,对于复杂、多方位的对象来说尤为如此。
使用层次特性来组织数据。
访问数据时并不需要专门的查询语言,因为访问是直接面向对象的。然而,有时也是需要使用查询的。
缺点
在RDBMS中,由于表的创建、修改或是删除而导致的模式修改通常并不依赖于应用。在使用对象数据库的应用中,模式修改类通常意味着还要对与当前类关联的其他应用类进行修改。这会导致对整个系统进行修改。
对象数据库通常会通过单独的API与特定的语言绑定,只有通过该API才能查询数据。在这方面,RDBMS就做得很好,这要归功于它所使用的通用查询语言。
典型代表:
VelocityDB
Objectivity
ZODB
Siaqodb
EyeDB
这是针对在线分析处理的一种数据库,它可以从各种关系型数据库中检索数据,并且以某种方式将信息组织为类别和段当中。
典型代表:
GlobalsDB
Intersystems Cache
SciDB
Rasdaman
多维数据库的变种。主要的特性是支持使用属性来存储值的列表。
典型代表:
Rocket U2
OpenInsight
Reality
NoSQL发展迅猛,不过这并不意味着关系型数据库就没落了。他们还会在很多场景下发挥着巨大的作用,并且与NoSQL数据库共存。对数据库的选择应当是基于数据存储本身的特性,以及所预估的数据量。
另外,看完之后是不是选择障碍症状又加重了?
以上是关于选择障碍症患者的福音:NoSQL类型知多少的主要内容,如果未能解决你的问题,请参考以下文章