深入Java集合:HashMap实现原理

Posted 吴士龙

tags:

篇首语:本文由小常识网(cha138.com)小编为大家整理,主要介绍了深入Java集合:HashMap实现原理相关的知识,希望对你有一定的参考价值。

概述

HashMap 是基于哈希表的 Map 接口的非同步实现。此实现提供所有可选的映射操作,并允许使用 null 值和 null 键。此类不保证映射的顺序,特别是它不保证该顺序恒久不变。

数据结构

在 java 编程语言中,最基本的结构就是两种,一个是数组,另外一个是模拟指针(引 用),所有的数据结构都可以用这两个基本结构来构造的,HashMap 也不例外。HashMap 实际上是一个“链表散列”的数据结构,即数组和链表的结合体。


从上图中可以看出,HashMap 底层就是一个数组结构,数组中的每一项又是一个链表。当新建一个 HashMap 的时候,就会初始化一个数组。源码如下:

/**
  * The table, resized as necessary. Length MUST Always be a power of two.
 */
transientEntry[] table;

staticclassEntry<K,V> implementsMap.Entry<K,V> 
     finalK key;
     Vvalue;
     Entry<K,V> next;
     finalinthash;
     ……
 

可以看出,Entry 就是数组中的元素,每个 Map.Entry 其实就是一个 key-value 对,它持有一个指向下一个元素的引用,这就构成了链表。

存取实现

1)  存储:

publicV put(K key, V value) 
       // HashMap 允许存放null键和 null值。
       // 当 key为 null时,调用putForNullKey方法,将value放置在数组第一个位置。
       if (key ==null)
            returnputForNullKey(value);
       // 根据 key 的 keyCode重新计算hash 值。
       inthash = hash(key.hashCode());
     // 搜索指定hash值在对应table中的索引。
     inti = indexFor(hash, table.length);
    // 如果i 索引处的Entry不为null,通过循环不断遍历e 元素的下一个元素。
     for(Entry<K,V> e = table[i]; e != null; e = e.next) 
           Object k;
           if(e.hash == hash && ((k = e.key) == key || key.equals(k))) 
                VoldValue = e.value;
                e.value = value;
                e.recordAccess(this);
                returnoldValue;
        
    
    // 如果 i 索引处的Entry为 null,表明此处还没有Entry。
    modCount++;
    // 将 key、value添加到 i 索引处。
     addEntry(hash, key, value, i);
      returnnull;

从上面的源代码中可以看出:当我们往 HashMap 中 put 元素的时候,先根据 key 的 hashCode 重新计算 hash 值,根据 hash 值得到这个元素在数组中的位置(即下标),如 果数组该位置上已经存放有其他元素了,那么在这个位置上的元素将以链表的形式存放,新加入的放在链头,最先加入的放在链尾。如果数组该位置上没有元素,就直接将该元素放到此数组中的该位置上。

addEntry(hash, key, value, i)方法根据计算出的 hash 值,将 key-value 对放在数组 table的 i 索引处。addEntry 是 HashMap 提供的一个包访问权限的方法,代码如下:

 voidaddEntry(inthash, Kkey, V value, intbucketIndex) 
      // 获取指定bucketIndex索引处的Entry
      Entry<K,V> e = table[bucketIndex];
  // 将新创建的Entry放入bucketIndex索引处,并让新的Entry指向原来的Entry
       table[bucketIndex] = newEntry<K,V>(hash, key, value, e);
    // 如果Map中的key-value对的数量超过了极限
     if (size++ >= threshold)
     // 把 table对象的长度扩充到原来的2 倍。
         resize(2* table.length);
 

当系统决定存储 HashMap 中的 key-value 对时,完全没有考虑 Entry 中的 value,仅仅 只是根据 key 来计算并决定每个 Entry 的存储位置。我们完全可以把 Map 集合中的 value 当 成 key 的附属,当系统决定了 key 的存储位置之后,value 随之保存在那里即可。

hash(int h)方法根据 key 的 hashCode 重新计算一次散列。此算法加入了高位计算,防止低位不变,高位变化时,造成的 hash 冲突。

 static int hash(inth) 
     h^= (h >>> 20) ^ (h>>> 12);
     returnh ^ (h >>> 7) ^ (h >>> 4);
 

我们可以看到在 HashMap 中要找到某个元素,需要根据 key 的 hash 值来求得对应数 组中的位置。如何计算这个位置就是 hash 算法。前面说过 HashMap的数据结构是数组和 链表的结合,所以我们当然希望这个 HashMap 里面的 元素位置尽量的分布均匀些,尽量 使得每个位置上的元素数量只有一个,那么当我们用 hash 算法求得这个位置的时候,马上就可以知道对应位置的元素就是我们要的,而不用再去遍历链表,这样就大大优化了查询的效率。

对于任意给定的对象,只要它的 hashCode() 返回值相同,那么程序调用 hash(int h) 方法所计算得到的 hash 码值总是相同的。我们首先想到的就是把 hash 值对数组长度取模运 算,这样一来,元素的分布相对来说是比较均匀的。但是,“模”运算的消耗还是比较大的, 在 HashMap 中是这样做的:调用 indexFor(int h, int length) 方法来计算该对象应该保存在 table 数组的哪个索引处。indexFor(int h, int length) 方法的代码如下:

 static int indexFor(inth, intlength) 
      returnh & (length-1);
--------------------------------------------
 

这个方法非常巧妙,它通过 h & (table.length -1) 来得到该对象的保存位,而 HashMap 底层数组的长度总是 2 的 n 次方,这是 HashMap 在速度上的优化。在 HashMap 构造器中 有如下代码:

 int capacity =1;
       while(capacity < initialCapacity)
           capacity <<= 1;

这段代码保证初始化时 HashMap 的容量总是 2 的 n 次方,即底层数组的长度总是为 2 的 n 次方。当 length 总是 2 的 n 次方时,h& (length-1)运算等价于对 length 取模,也就是 h%length,但是&比%具有更高的效率。

这看上去很简单,其实比较有玄机的,我们做个demo来说明:

假设数组长度分别为 15 和 16,优化后的 hash 码分别为 8 和 9,那么&运算后的结果如下:


从上面的demo中可以看出:当它们和 15-1(1110)“与”的时候,产生了相同的结果, 也就是说它们会定位到数组中的同一个位置上去,这就产生了碰撞,8 和 9 会被放到数组中的同一个位置上形成链表,那么查询的时候就需要遍历这个链 表,得到 8 或者 9,这样就 降低了查询的效率。同时,我们也可以发现,当数组长度为 15 的时候,hash 值会与 15-1(1110)进行“与”,那么 最后一位永远是 0,而 0001,0011,0101,1001,1011,0111, 1101 这几个位置永远都不能存放元素了,空间浪费相当大,更糟的是这种情况中,数组可 以使用的位置比数组长度小了很多,这意味着进一步增加了碰撞的几率,减慢了查询的效率! 而当数组长度为 16 时,即为 2 的 n 次方时,2n-1 得到的二进制数的每个位上的值都为 1, 这使得在低位上&时,得到的和原 hash 的低位相同,加之 hash(int h)方法对 key 的 hashCode的进一步优化,加入了高位计算,就使得只有相同的 hash 值的两个值才会被放到数组中的 同一个位置上形成链表。所以说,当数组长度为 2 的 n 次幂的时候,不同的 key 算得得 index 相同的几率较小,那么数据在数组上分布就比较均匀,也就是说碰撞的几率小,相对的,查询的时候就不用遍历某个位置上的链表,这样查询效率也就较高了。

根据上面 put 方法的源代码可以看出,当程序试图将一个 key-value 对放入 HashMap中时,程序首先根据该 key 的 hashCode() 返回值决定该 Entry 的存储位置:如果两个 Entry 的 key 的 hashCode() 返回值相同,那它们的存储位置相同。如果这两个 Entry 的 key 通过 equals 比较返回 true,新添加 Entry 的 value 将覆盖集合中原有 Entry 的value,但 key 不会覆盖。如果这两个 Entry 的 key 通过 equals 比较返回 false, 新添加的 Entry 将与集合中原有 Entry 形成 Entry 链,而且新添加的 Entry 位于 Entry 链的 头部——具体说明继续看 addEntry() 方法的说明。

2) 读取

public V get(Object key) 
       if (key ==null)
           return getForNullKey();
      int hash = hash(key.hashCode());
      for(Entry<K,V> e = table[indexFor(hash, table.length)];
            e != null;
           e = e.next) 
            Object k;
           if(e.hash == hash && ((k = e.key) == key || key.equals(k)))
               returne.value;
    
   return null;
 

有了上面存储时的 hash 算法作为基础,理解起来这段代码就很容易了。从上面的源代 码中可以看出:从 HashMap 中 get 元素时,首先计算 key 的 hashCode,找到数组中对应 位置的某一元素,然后通过 key 的 equals 方法在对应位置的链表中找到需要的元素。

归纳起来简单地说,HashMap 在底层将 key-value 当成一个整体进行处理,这个整体 就是一个 Entry 对象。HashMap 底层采用一个 Entry[] 数组来保存所有的 key-value 对,当 需要存储一个 Entry 对象时,会根据 hash 算法来决定其在数组中的存储位置,在根据 equals 方法决定其在该数组位置上的链表中的存储位置;当需要取出一个 Entry 时,也会根据 hash 算法找到其在数组中的存储位置,再根据 equals 方法从该位置上的链表中取出该 Entry。

resize(rehash)

当 HashMap中的元素越来越多的时候,hash 冲突的几率也就越来越高,因为数组的 长度是固定的。所以为了提高查询的效率,就要对 HashMap 的数组进行扩容,数组扩容这 个操作也会出现在 ArrayList 中,这是一个常用的操作,而在 HashMap 数组扩容之后,最消耗性能的点就出现了:原数组中的数据必须重新计算其在新数组中的位置,并放进去,这就是 resize。

那么 HashMap 什么时候进行扩容呢?当 HashMap 中的元素个数超过数组大小*loadFactor 时,就会进行数组扩容,loadFactor 的默认值为 0.75,这是一个折中的取值。 也就是说,默认情况下,数组大小为 16,那么当 HashMap 中元素个数超过 16*0.75=12 的 时候,就把数组的大小扩展为 2*16=32,即扩大一倍,然后重新计算每个元素在数组中的位 置,而这是一个非常消耗性能的操作,所以如果我们已经预知 HashMap 中元素的个数,那 么预设元素的个数能够有效的提高 HashMap 的性能。

性能参数

HashMap 包含如下几个构造器:

HashMap():构建一个初始容量为 16,负载因子为 0.75 的 HashMap。 HashMap(int initialCapacity):构建一个初始容量为 initialCapacity,负载因子为 0.75 的 HashMap。

HashMap(int initialCapacity, float loadFactor):以指定初始容量、指定的负载因子创建一 个 HashMap。

HashMap 的基础构造器 HashMap(intinitialCapacity, float loadFactor)带有两个参数,它 们是初始容量 initialCapacity 和加载因子 loadFactor。

initialCapacity:HashMap 的最大容量,即为底层数组的长度。

loadFactor:负载因子 loadFactor 定义为:散列表的实际元素数目(n)/ 散列表的容量(m)。 负载因子衡量的是一个散列表的空间的使用程度,负载因子越大表示散列表的装填程度越 高,反之愈小。对于使用链表法的散列表来说,查找一个元素的平均时间是 O(1+a),因此 如果负载因子越大,对空间的利用更充分,然而后果是查找效率的降低;如果负载因子太小,那么散列表的数据将过于稀疏,对空间造成严重浪费。

HashMap 的实现中,通过 threshold 字段来判断 HashMap 的最大容量:

threshold = (int)(capacity * loadFactor);

结合负载因子的定义公式可知,threshold 就是在此 loadFactor 和 capacity 对应下允许的 最大元素数目,超过这个数目就重新 resize,以降低实际的负载因子。默认的的负载因子 0.75 是对空间和时间效率的一个平衡选择。当容量超出此最大容量时,resize 后的 HashMap容量是容量的两倍:

 if (size++ >= threshold)
       resize(2*table.length);

Fail-Fast机制

我们知道 java.util.HashMap 不是线程安全的,因此如果在使用迭代器的过程中有其他 线程修改了 map,那么将抛出 ConcurrentModificationException,这就是所谓 fail-fast 策略。 这一策略在源码中的实现是通过 modCount 域,modCount 顾名思义就是修改次数,对HashMap 内容的修改都将增加这个值,那么在迭代器初始化过程中会将这个值赋给迭代器的 expectedModCount。

 HashIterator() 
       expectedModCount = modCount;
       if (size > 0)  // advance to first entry
      Entry[] t = table;
       while(index < t.length&& (next = t[index++]) == null)
         ;
   

在迭代过程中,判断 modCount 跟 expectedModCount 是否相等,如果不相等就表示已 经有其他线程修改了 Map:

注意到 modCount 声明为 volatile,保证线程之间修改的可见性。

 final Entry<K,V> nextEntry() 
       if (modCount !=expectedModCount)
            throw new ConcurrentModificationException();

在 HashMap 的 API 中指出:

由所有 HashMap 类的“collection 视图方法”所返回的迭代器都是快速失败的:在迭代器创建之后,如果从结构上对映射进行修改,除非通过迭代器本身的 remove 方法,其他任何 时间任何方式的修改,迭代器都将抛出 ConcurrentModificationException。因此,面对并发的修改,迭代器很快就会完全失败,而不冒在将来不确定的时间发生任意不确定行为的风险。

注意,迭代器的快速失败行为不能得到保证,一般来说,存在非同步的并发修改时,不可能作出任何坚决的保证。快速失败迭代器尽最大努力抛

出 ConcurrentModificationException。因此,编写依赖于此异常的程序的做法是错误的,正确做法是:迭代器的快速失败行为应该仅用于检测程序错误。

业务思想

关于JAVA集合这一块是重点也是难点,大家在学习过程中经常搞不懂、搞乱,所以总结一下,能够把自己的知识点梳理一下,也希望能够帮到大家。

最近知识的复杂度越来越大,算是自己的一个小环节吧!加油,做更好的自己!

                                                                                      未完待续... ...


以上是关于深入Java集合:HashMap实现原理的主要内容,如果未能解决你的问题,请参考以下文章

Java 集合深入理解 :HashMap之实现原理及hash碰撞

深入Java集合:HashMap实现原理

转:深入Java集合学习系列:HashSet的实现原理

深入Java集合:HashSet实现原理

Java 集合深入理解 (十四) :Hashtable实现原理研究

Java 集合深入理解 :HashMap之扩容 数据迁移