数据库包括哪些?

Posted

tags:

篇首语:本文由小常识网(cha138.com)小编为大家整理,主要介绍了数据库包括哪些?相关的知识,希望对你有一定的参考价值。

参考技术A 问题一:数据库系统包括什么? 通常由软件、数据库和数据管理员组成。

问题二:请问数据库有哪些种类呢? 根据存储模型划分,数据库类型主要可分为:网状数据库(Network Database)、关系数据库(Relational Database)、树状数据库(Hierarchical Database)、面向对象数据库(Object-oriented Database)等。商业应用中主要是关系数据库,比如Oracle、DB2、Sybase、MS SQL Server、Informax、mysql等。全部罗列出来是没有意义的,数据库太多了,你不说你的工作是涉及哪方面,恐怕很难提供更适合你的数据库。
初级应用一般是ACCESS 配合的脚本程序一般是 ASP ASP.NET JSPMICROSOFT SQL 比较复杂点 不过功能强大很多 配合的脚本和ACCESS的一样MYSQL和php的组合是比较完美的如果你需要处理1000W条数据以上级别的数据,那以上的都不合适,一般用的比较多的是ORACLE 这个入门难度非常大如果想学的话就先学MICROSOFT SQL吧,这个网上教学比较多,ASP.NET 2.0,应用的是非常广泛的。

问题三:sql数据类型有哪些 一、 整数数据类型
整数数据类型是最常用的数据类型之一。

1、INT (INTEGER)
INT (或INTEGER)数据类型存储从-2的31次方 (-2 ,147 ,483 ,648) 到2的31次方-1 (2 ,147 ,483,647) 之间的所有正负整数。每个INT 类型的数据按4 个字节存储,其中1 位表示整数值的正负号,其它31 位表示整数值的长度和大小。

2、SMALLINT
SMALLINT 数据类型存储从-2的15次方( -32, 768) 到2的15次方-1( 32 ,767 )之间的所有正负整数。每个SMALLINT 类型的数据占用2 个字节的存储空间,其中1 位表示整数值的正负号,其它15 位表示整数值的长度和大小。
3、TINYINT

TINYINT数据类型存储从0 到255 之间的所有正整数。每个TINYINT类型的数据占用1 个字节的存储空间。

4、BIGINT
BIGINT 数据类型存储从-2^63 (-9 ,223, 372, 036, 854, 775, 807) 到2^63-1( 9, 223, 372, 036 ,854 ,775, 807) 之间的所有正负整数。每个BIGINT 类型的数据占用8个字节的存储空间。
二、 浮点数据类型
浮点数据类型用于存储十进制小数。浮点数值的数据在SQL Server 中采用上舍入(Round up 或称为只入不舍)方式进行存储。所谓上舍入是指,当(且仅当)要舍入的数是一个非零数时,对其保留数字部分的最低有效位上的数值加1 ,并进行必要的进位。若一个数是上舍入数,其绝对值不会减少。如:对3.14159265358979 分别进行2 位和12位舍入,结果为3.15 和3.141592653590。

1、REAL 数据类型
REAL数据类型可精确到第7 位小数,其范围为从-3.40E -38 到3.40E +38。 每个REAL类型的数据占用4 个字节的存储空间。
2、FLOAT
FLOAT数据类型可精确到第15 位小数,其范围为从-1.79E -308 到1.79E +308。 每个FLOAT 类型的数据占用8 个字节的存储空间。 FLOAT数据类型可写为FLOAT[ n ]的形式。n 指定FLOAT 数据的精度。n 为1到15 之间的整数值。当n 取1 到7 时,实际上是定义了一个REAL 类型的数据,系统用4 个字节存储它;当n 取8 到15 时,系统认为其是FLOAT 类型,用8 个字节存储它。
3、DECIMAL

DECIMAL数据类型可以提供小数所需要的实际存储空间,但也有一定的限制,您可以用2 到17 个字节来存储从-10的38次方-1 到10的38次方-1 之间的数值。可将其写为DECIMAL[ p [s] ]的形式,p 和s 确定了精确的比例和数位。其中p 表示可供存储的值的总位数(不包括小数点),缺省值为18; s 表示小数点后的位数,缺省值为0。 例如:decimal (15 5),表示共有15 位数,其中整数10 位,小数5。 位表4-3 列出了各精确度所需的字节数之间的关系。
4、NUMERIC
NUMERIC数据类型与DECIMAL数据类型完全相同。
注意:SQL Server 为了和前端的开发工具配合,其所支持的数据精度默认最大为28位。

三、 二进制数据类型
1、BINARY

BINARY 数据类型用于存储二进制数据。其定义形式为BINARY( n), n 表示数据的长度,取值为1 到......>>

问题四:常用数据库有哪些? 1. IBM 的DB2
作为关系数据库领域的开拓者和领航人,IBM在1997年完成了System R系统的原型,1980年开始提供集成的数据库服务器―― System/38,随后是SQL/DSforVSE和VM,其初始版本与SystemR研究原型密切相关。DB2 forMVSV1 在1983年推出。该版本的目标是提供这一新方案所承诺的简单性,数据不相关性和用户生产率。1988年DB2 for MVS 提供了强大的在线事务处理(OLTP)支持,1989 年和1993 年分别以远程工作单元和分布式工作单元实现了分布式数据库支持。最近推出的DB2 Universal Database 6.1则是通用数据库的典范,是第一个具备网上功能的多媒体关系数据库管理系统,支持包括Linux在内的一系列平台。
2. Oracle
Oracle 前身叫SDL,由Larry Ellison 和另两个编程人员在1977创办,他们开发了自己的拳头产品,在市场上大量销售,1979 年,Oracle公司引入了第一个商用SQL 关系数据库管理系统。Oracle公司是最早开发关系数据库的厂商之一,其产品支持最广泛的操作系统平台。目前Oracle关系数据库产品的市场占有率名列前茅。
3. Informix
Informix在1980年成立,目的是为Unix等开放操作系统提供专业的关系型数据库产品。公司的名称Informix便是取自Information 和Unix的结合。Informix第一个真正支持SQL语言的关系数据库产品是Informix SE(StandardEngine)。InformixSE是在当时的微机Unix环境下主要的数据库产品。它也是第一个被移植到Linux上的商业数据库产品。
4. Sybase
Sybase公司成立于1984年,公司名称“Sybase”取自“system”和 “database” 相结合的含义。Sybase公司的创始人之一Bob Epstein 是Ingres 大学版(与System/R同时期的关系数据库模型产品)的主要设计人员。公司的第一个关系数据库产品是1987年5月推出的Sybase SQLServer1.0。Sybase首先提出Client/Server 数据库体系结构的思想,并率先在Sybase SQLServer 中实现。
5. SQL Server
1987 年,微软和 IBM合作开发完成OS/2,IBM 在其销售的OS/2 ExtendedEdition 系统中绑定了OS/2Database Manager,而微软产品线中尚缺少数据库产品。为此,微软将目光投向Sybase,同Sybase 签订了合作协议,使用Sybase的技术开发基于OS/2平台的关系型数据库。1989年,微软发布了SQL Server 1.0 版。
6. PostgreSQL
PostgreSQL 是一种特性非常齐全的自由软件的对象――关系性数据库管理系统(ORDBMS),它的很多特性是当今许多商业数据库的前身。PostgreSQL最早开始于BSD的Ingres项目。PostgreSQL 的特性覆盖了SQL-2/SQL-92和SQL-3。首先,它包括了可以说是目前世界上最丰富的数据类型的支持;其次,目前PostgreSQL 是唯一支持事务、子查询、多版本并行控制系统、数据完整性检查等特性的唯一的一种自由软件的数据库管理系统.
......>>

问题五:数据库的对象有哪些 Funciton:函数
Procedure:存储过程
Package:代码包,一个包里面,定义多个存储过程、函数、类型、常量等
Type:自定义数据类型
Trigger:触发器
Job:数据库作业 (定期执行的)
Table:表
Index:索引
Constraint:约束,限制各数据项应满足哪些限阀条件
View:视图
Materialized View:物化视图
Sequence:序列
User:叫 用户
Synonym:同义词
Database link:数据库链接(ORACLE有,别的数据库不熟,想必也应该有,可能不叫这个名字)
TableSpace:表空间(ORACLE叫这个名字,别的数据库不熟)
CURSOR:游标
常用的大致这些,可能会有遗漏,但也应该不会差太多。

问题六:常用数据库有哪些?他们有什么区别 开源的Mysql顶;PostgreSQL即开放源码的
商业的Oracle/SQL Server/DB2即收费的

问题七:查看数据库中有哪些表空间 可以用S罚L语句 SELECT ** FROM v$tablespace
也可以用oracle enterprise manger console 直接在可视化窗口上查看

问题八:常见的数据库应用系统有哪些? 现在极大多的企业级软件都是基于数据库的。

比如:
ERP: 企业资源管理计划
CRM: 客户关系管理
OA: 办公自动化。
12306铁道部的网上订票系统。
。。。

问题九:如何看mysql都有哪些数据库 第一步:首先是查看mysql数据库的端口号,使用命令show
第二步:查看有哪些数据库,
第三步:查看mysql数据库所有用户,
第四步:查看某个数据库中所有的表

问题十:数据库系统包括什么? 通常由软件、数据库和数据管理员组成。

大数据课程基础内容都应该包含哪些

数学,英语!
基础阶段:Linux、Docker、KVM、MySQL基础、Oracle基础、MongoDB、redis。
hadoop mapreduce hadoop,HDFS工作原理,YARN介绍及组件介绍。
大数据存储阶段:hbase、hive、sqoop。
大数据架构设计阶段:Flume分布式、Zookeeper、Kafka。
大数据实时计算阶段:Mahout、Spark、storm。
大数据数据采集阶段:Python、Scala。
数据分析:python,R
大数据商业实战阶段:实操企业大数据处理业务场景,分析需求、解决方案实施,综合技术实战应用。
参考技术A

  Sqoop:(发音:skup)作为一款开源的离线数据传输工具,主要用于Hadoop(Hive) 与传统数据库(MySql,PostgreSQL)间的数据传递。它可以将一个关系数据库中数据导入Hadoop的HDFS中,也可以将HDFS中的数据导入关系型数据库中。

  Flume:实时数据采集的一个开源框架,它是Cloudera提供的一个高可用用的、高可靠、分布式的海量日志采集、聚合和传输的系统。目前已经是Apache的顶级子项目。使用Flume可以收集诸如日志、时间等数据并将这些数据集中存储起来供下游使用(尤其是数据流框架,例如Storm)。和Flume类似的另一个框架是Scribe(FaceBook开源的日志收集系统,它为日志的分布式收集、统一处理提供一个可扩展的、高容错的简单方案)大数据分析培训课程内容有哪些 

  Kafka:通常来说Flume采集数据的速度和下游处理的速度通常不同步,因此实时平台架构都会用一个消息中间件来缓冲,而这方面最为流行和应用最为广泛的无疑是Kafka。它是由LinkedIn开发的一个分布式消息系统,以其可以水平扩展和高吞吐率而被广泛使用。目前主流的开源分布式处理系统(如Storm和Spark等)都支持与Kafka 集成。

  Kafka是一个基于分布式的消息发布-订阅系统,特点是速度快、可扩展且持久。与其他消息发布-订阅系统类似,Kafka可在主题中保存消息的信息。生产者向主题写入数据,消费者从主题中读取数据。浅析大数据分析技术 

  作为一个分布式的、分区的、低延迟的、冗余的日志提交服务。和Kafka类似消息中间件开源产品还包括RabbiMQ、ActiveMQ、ZeroMQ等。

  MapReduce:MapReduce是Google公司的核心计算模型,它将运行于大规模集群上的复杂并行计算过程高度抽象为两个函数:map和reduce。MapReduce最伟大之处在于其将处理大数据的能力赋予了普通开发人员,以至于普通开发人员即使不会任何的分布式编程知识,也能将自己的程序运行在分布式系统上处理海量数据。

  Hive:MapReduce将处理大数据的能力赋予了普通开发人员,而Hive进一步将处理和分析大数据的能力赋予了实际的数据使用人员(数据开发工程师、数据分析师、算法工程师、和业务分析人员)。大数据分析培训课程大纲 

  Hive是由Facebook开发并贡献给Hadoop开源社区的,是一个建立在Hadoop体系结构上的一层SQL抽象。Hive提供了一些对Hadoop文件中数据集进行处理、查询、分析的工具。它支持类似于传统RDBMS的SQL语言的查询语言,一帮助那些熟悉SQL的用户处理和查询Hodoop在的数据,该查询语言称为Hive SQL。Hive SQL实际上先被SQL解析器解析,然后被Hive框架解析成一个MapReduce可执行计划,并按照该计划生产MapReduce任务后交给Hadoop集群处理。

  Spark:尽管MapReduce和Hive能完成海量数据的大多数批处理工作,并且在打数据时代称为企业大数据处理的首选技术,但是其数据查询的延迟一直被诟病,而且也非常不适合迭代计算和DAG(有限无环图)计算。由于Spark具有可伸缩、基于内存计算能特点,且可以直接读写Hadoop上任何格式的数据,较好地满足了数据即时查询和迭代分析的需求,因此变得越来越流行。

  Spark是UC Berkeley AMP Lab(加州大学伯克利分校的 AMP实验室)所开源的类Hadoop MapReduce的通用并行框架,它拥有Hadoop MapReduce所具有的优点,但不同MapReduce的是,Job中间输出结果可以保存在内存中,从而不需要再读写HDFS ,因此能更好适用于数据挖掘和机器学习等需要迭代的MapReduce算法。

  Spark也提供类Live的SQL接口,即Spark SQL,来方便数据人员处理和分析数据。

  Spark还有用于处理实时数据的流计算框架Spark Streaming,其基本原理是将实时流数据分成小的时间片段(秒或几百毫秒),以类似Spark离线批处理的方式来处理这小部分数据。

  Storm:MapReduce、Hive和Spark是离线和准实时数据处理的主要工具,而Storm是实时处理数据的。

  Storm是Twitter开源的一个类似于Hadoop的实时数据处理框架。Storm对于实时计算的意义相当于Hadoop对于批处理的意义。Hadoop提供了Map和Reduce原语,使对数据进行批处理变得非常简单和优美。同样,Storm也对数据的实时计算提供了简单的Spout和Bolt原语。Storm集群表面上和Hadoop集群非常像,但是在Hadoop上面运行的是MapReduce的Job,而在Storm上面运行的是Topology(拓扑)。

  Storm拓扑任务和Hadoop MapReduce任务一个非常关键的区别在于:1个MapReduce Job最终会结束,而一个Topology永远运行(除非显示的杀掉它),所以实际上Storm等实时任务的资源使用相比离线MapReduce任务等要大很多,因为离线任务运行完就释放掉所使用的计算、内存等资源,而Storm等实时任务必须一直占有直到被显式的杀掉。Storm具有低延迟、分布式、可扩展、高容错等特性,可以保证消息不丢失,目前Storm, 类Storm或基于Storm抽象的框架技术是实时处理、流处理领域主要采用的技术。

  Flink:在数据处理领域,批处理任务和实时流计算任务一般被认为是两种不同的任务,一个数据项目一般会被设计为只能处理其中一种任务,例如Storm只支持流处理任务,而MapReduce, Hive只支持批处理任务。

  Apache Flink是一个同时面向分布式实时流处理和批量数据处理的开源数据平台,它能基于同一个Flink运行时(Flink Runtime),提供支持流处理和批处理两种类型应用的功能。Flink在实现流处理和批处理时,与传统的一些方案完全不同,它从另一个视角看待流处理和批处理,将二者统一起来。Flink完全支持流处理,批处理被作为一种特殊的流处理,只是它的数据流被定义为有界的而已。基于同一个Flink运行时,Flink分别提供了流处理和批处理API,而这两种API也是实现上层面向流处理、批处理类型应用框架的基础。大数据分析要学什么 

  Beam:Google开源的Beam在Flink基础上更进了一步,不但希望统一批处理和流处理,而且希望统一大数据处理范式和标准。Apache Beam项目重点在于数据处理的的编程范式和接口定义,并不涉及具体执行引擎的实现。Apache Beam希望基于Beam开发的数据处理程序可以执行在任意的分布式计算引擎上。

  Apache Beam主要由Beam SDK和Beam Runner组成,Beam SDK定义了开发分布式数据处理任务业务逻辑的API接口,生成的分布式数据处理任务Pipeline交给具体的Beam Runner执行引擎。Apache Flink目前支持的API是由Java语言实现的,它支持的底层执行引擎包括Apache Flink、Apache Spark和Google Cloud Flatform。


相关推荐:

《大数据分析方法》、《转行大数据分析师后悔了》、《大数据分析师工作内容》、《学大数据分析培训多少钱》、《大数据分析培训课程大纲》、《大数据分析培训课程内容有哪些》、《大数据分析方法》、《大数据分析十八般工具》

以上是关于数据库包括哪些?的主要内容,如果未能解决你的问题,请参考以下文章

大数据包括哪些?

大数据课程基础内容都应该包含哪些

数据质量分析的主要内容包括哪些

大数据培训课程都包含哪些内容

数据库性能优化主要包括哪些方面?

数据库性能优化主要包括哪些方面?