数据质量分析的主要内容包括哪些
Posted
tags:
篇首语:本文由小常识网(cha138.com)小编为大家整理,主要介绍了数据质量分析的主要内容包括哪些相关的知识,希望对你有一定的参考价值。
包括:1、影响GIS数据质量的因素
2、 GIS数据源的质量问题
3、GIS数据库建立过程中的质量问题
4、GIS分析处理过程引入的数据质量问题 参考技术A
数据质量分析主要内容包括数据质量管理和数据治理两个大方向。数据质量管理是一种为了满足企业对于数据的需求,对各种业务活动产生的数据进行规范存储,然后通过ETL方法处理后把不同来源数据统一储存在数据仓库中的过程。
一、数据质量管理
数据质量管理不是短期内就能完成数据处理,提高数据质量的工具,也不是一种数据类的技术,更不是一个软件系统,而是一种长期循环持续的管理活动体系,是包含着方法论、业务和管理的数据类技术解决方案。
1.数据规划
企业管理人员必须先确定好数据质量管理体系的顶层设计,从思维的方向出发把企业文化变成数据驱动型文化,然后提前做好数据规范,将其融合到企业的KPI指标中,利用奖惩制度监督员工,把数据确立为企业的基石。
2.数据存储
部署商业智能BI,将企业原本拥有的业务信息系统以及其它不同来源的数据统一连接到数据仓库中,再经过ETL过程处理后,企业的数据质量就能飞速提高。
3、
数据分析人员可以通过派可数据BI中的可视化分析功能,从图表直连数据仓库取数,实现流程的自动化,避免出现其他干扰,然后通过联动、钻取等功能实现不同图表之间的互动,深化可视化分析报表展现的数据量和深度。
4.形成闭环
业务活动产生数据,分析人员利用数据判断出业务发展趋势,辅助管理人员对业务发展进行决策。在这么一个不断优化的闭环流程中,数据质量将会不断提高,逐渐将企业数据精细化到极致,进而产生变革。
二、数据治理
数据治理是一种提高数据质量的手段,最后还是要回到业务本身,实现落地,对于企业来说,能够对业务活动进行量化处理,并以数据的形式展现出来,是数字化时代现代企业的重要标志。
数据治理的目标其实就是不断提高业务数据的质量,增强数据的可信度,减少错漏。对于企业管理人员来说,数据就是他们了解企业整体发展状况最重要甚至是唯一的渠道。
数据治理的目标不仅是优化提效,更是涉及决策发展,关乎企业发展的关键。由此,我们可以初步确定数据治理的目标。
完整性:规范业务流程,完善数据库数据模型;
准确性:增加数据质量考核标准,建立奖惩制度;
及时性:优化数据存储调取时间,提升取数分析效率;
一致性:确定数据指标体系,确保数据和业务相对应;
唯一性:添加数据查询索引,避免数据库数据重复。
派可数据 商业智能BI可视化分析平台
大数据分析的步骤有哪些
数据分析过程的主要活动包括识别信息需求,收集数据,分析数据,评估和提高数据分析的有效性。下面,中琛魔方将为大家详细介绍这四个步骤。
一,识别需求
信息需求是确保数据分析过程有效性的主要条件,并且可以为数据收集和分析提供明确的目标。识别信息需求是管理者的责任。管理人员应根据决策和过程控制的需求提出信息需求。就过程控制而言,管理者应识别用于支持过程输入,过程输出,资源分配的合理性,过程活动的优化以及过程异常的发现所需的信息。
二,收集数据
收集数据的目的是确保数据分析过程有效的基础。组织需要收集数据的内容,渠道和方法的计划。
三,分析数据
分析数据是将通过处理,分类和分析收集到的数据转化为有价值的信息,通常使用以下方法:旧的七个工具:即排列图、因果图、分层法、调查表、散步图、直方图、控制图;七个新工具:关联图、系统图、矩阵图、KJ法、计划评审技术、PDPC法、矩阵数据图。
四,过程改进
数据分析是质量管理体系的基础。组织的管理者应在适当时评估以下问题的有效性:首先,为决策提供的信息是否充分和可信,以及由于信息不足,不准确和滞后而导致决策错误的问题;第二个问题是信息在持续改进质量管理体系、过程和产品方面起到的作用是否达到预期,以及在产品过程中使用数据分析是否有效?第三是收集目的是否明确,收集的数据是否真实,充分,信息通道是否畅通。第四,数据分析方法是否合理,风险是否控制在可接受的范围内;实用数据分析所需的资源是否得到保证。
大数据分析的步骤有哪些.中琛魔方大数据平台温馨提醒:在进行数据分析的时候一定要做好数据分析的细节工作,希望这篇文章能够给大家带来帮助,只有做好这些步骤,才能够做好数据分析的工作。
以上是关于数据质量分析的主要内容包括哪些的主要内容,如果未能解决你的问题,请参考以下文章