八:聚类算法K-means(20191223-29)
Posted
tags:
篇首语:本文由小常识网(cha138.com)小编为大家整理,主要介绍了八:聚类算法K-means(20191223-29)相关的知识,希望对你有一定的参考价值。
参考技术A 学习内容:无监督聚类算法K-Meansk-means:模型原理、收敛过程、超参数的选择
聚类分析是在数据中发现数据对象之间的关系,将数据进行分组,组内的相似性越大,组间的差别越大,则聚类效果越好。
不同的簇类型: 聚类旨在发现有用的对象簇,在现实中我们用到很多的簇的类型,使用不同的簇类型划分数据的结果是不同的。
基于原型的: 簇是对象的集合,其中每个对象到定义该簇的 原型 的距离比其他簇的原型距离更近,如(b)所示的原型即为中心点,在一个簇中的数据到其中心点比到另一个簇的中心点更近。这是一种常见的 基于中心的簇 ,最常用的K-Means就是这样的一种簇类型。 这样的簇趋向于球形。
基于密度的 :簇是对象的密度区域,(d)所示的是基于密度的簇,当簇不规则或相互盘绕,并且有早上和离群点事,常常使用基于密度的簇定义。
关于更多的簇介绍参考《数据挖掘导论》。
基本的聚类分析算法
1. K均值: 基于原型的、划分的距离技术,它试图发现用户指定个数(K)的簇。
2. 凝聚的层次距离: 思想是开始时,每个点都作为一个单点簇,然后,重复的合并两个最靠近的簇,直到尝试单个、包含所有点的簇。
3. DBSCAN: 一种基于密度的划分距离的算法,簇的个数有算法自动的确定,低密度中的点被视为噪声而忽略,因此其不产生完全聚类。
不同的距离量度会对距离的结果产生影响,常见的距离量度如下所示:
优点:易于实现
缺点:可能收敛于局部最小值,在大规模数据收敛慢
算法思想:
选择K个点作为初始质心
repeat
将每个点指派到最近的质心,形成K个簇
重新计算每个簇的质心
until 簇不发生变化或达到最大迭代次数
这里的“重新计算每个簇的质心”,是根据目标函数来计算的,因此在开始时要考虑 距离度量和目标函数。
考虑欧几里得距离的数据,使用 误差平方和(Sum of the Squared Error,SSE) 作为聚类的目标函数,两次运行K均值产生的两个不同的簇集,使用SSE最小的那个。
k表示k个聚类中心,ci表示第几个中心,dist表示的是欧几里得距离。
这里有一个问题就是为什么,我们更新质心是让所有的点的平均值,这里就是SSE所决定的。
k均值算法非常简单且使用广泛,但是其有主要的两个缺陷:
1. K值需要预先给定 ,属于预先知识,很多情况下K值的估计是非常困难的,对于像计算全部微信用户的交往圈这样的场景就完全的没办法用K-Means进行。对于可以确定K值不会太大但不明确精确的K值的场景,可以进行迭代运算,然后找出Cost Function最小时所对应的K值,这个值往往能较好的描述有多少个簇类。
2. K-Means算法对初始选取的聚类中心点是敏感的 ,不同的随机种子点得到的聚类结果完全不同
3. K均值算法并不是很所有的数据类型。 它不能处理非球形簇、不同尺寸和不同密度的簇,银冠指定足够大的簇的个数是他通常可以发现纯子簇。
4. 对离群点的数据进行聚类时,K均值也有问题 ,这种情况下,离群点检测和删除有很大的帮助。
下面对初始质心的选择进行讨论:
当初始质心是随机的进行初始化的时候,K均值的每次运行将会产生不同的SSE,而且随机的选择初始质心结果可能很糟糕,可能只能得到局部的最优解,而无法得到全局的最优解。
多次运行,每次使用一组不同的随机初始质心,然后选择一个具有最小的SSE的簇集。该策略非常的简单,但是效果可能不是很好,这取决于数据集合寻找的簇的个数。
关于更多,参考《数据挖掘导论》
为了克服K-Means算法收敛于局部最小值的问题,提出了一种 二分K-均值(bisecting K-means)
将所有的点看成是一个簇
当簇小于数目k时
对于每一个簇
计算总误差
在给定的簇上进行K-均值聚类,k值为2 计算将该簇划分成两个簇后总误差
选择是的误差最小的那个簇进行划分
在原始的K-means算法中,每一次的划分所有的样本都要参与运算,如果数据量非常大的话,这个时间是非常高的,因此有了一种分批处理的改进算法。
使用Mini Batch(分批处理)的方法对数据点之间的距离进行计算。
Mini Batch的好处:不必使用所有的数据样本,而是从不同类别的样本中抽取一部分样本来代表各自类型进行计算。n 由于计算样本量少,所以会相应的减少运行时间n 但另一方面抽样也必然会带来准确度的下降。
聚类试图将数据集中的样本划分为若干个通常是不相交的子集,每个子集成为一个“簇”。通过这样的划分,每个簇可能对应于一些潜在的概念(也就是类别);需说明的是,这些概念对聚类算法而言事先是未知的,聚类过程仅能自动形成簇结构,簇对应的概念语义由使用者来把握和命名。
聚类是无监督的学习算法,分类是有监督的学习算法。所谓有监督就是有已知标签的训练集(也就是说提前知道训练集里的数据属于哪个类别),机器学习算法在训练集上学习到相应的参数,构建模型,然后应用到测试集上。而聚类算法是没有标签的,聚类的时候,需要实现的目标只是把相似的东西聚到一起。
聚类的目的是把相似的样本聚到一起,而将不相似的样本分开,类似于“物以类聚”,很直观的想法是同一个簇中的相似度要尽可能高,而簇与簇之间的相似度要尽可能的低。
性能度量大概可分为两类: 一是外部指标, 二是内部指标 。
外部指标:将聚类结果和某个“参考模型”进行比较。
内部指标:不利用任何参考模型,直接考察聚类结果。
对于给定的样本集,按照样本之间的距离大小,将样本集划分为K个簇。让簇内的点尽量紧密的连在一起,而让簇间的距离尽量的大
初学者会很容易就把K-Means和KNN搞混,其实两者的差别还是很大的。
K-Means是无监督学习的聚类算法,没有样本输出;而KNN是监督学习的分类算法,有对应的类别输出。KNN基本不需要训练,对测试集里面的点,只需要找到在训练集中最近的k个点,用这最近的k个点的类别来决定测试点的类别。而K-Means则有明显的训练过程,找到k个类别的最佳质心,从而决定样本的簇类别。
当然,两者也有一些相似点,两个算法都包含一个过程,即找出和某一个点最近的点。两者都利用了最近邻(nearest neighbors)的思想。
优点:
简单, 易于理解和实现 ;收敛快,一般仅需5-10次迭代即可,高效
缺点:
1,对K值得选取把握不同对结果有很大的不同
2,对于初始点的选取敏感,不同的随机初始点得到的聚类结果可能完全不同
3,对于不是凸的数据集比较难收敛
4,对噪点过于敏感,因为算法是根据基于均值的
5,结果不一定是全局最优,只能保证局部最优
6,对球形簇的分组效果较好,对非球型簇、不同尺寸、不同密度的簇分组效果不好。
K-means算法简单理解,易于实现(局部最优),却会有对初始点、噪声点敏感等问题;还容易和监督学习的分类算法KNN混淆。
参考阅读:
1.《 深入理解K-Means聚类算法 》
2.《 K-Means 》
K-Means聚类算法原理
K-Means算法是无监督的聚类算法,它实现起来比较简单,聚类效果也不错,因此应用很广泛。K-Means算法有大量的变体,本文就从最传统的K-Means算法讲起,在其基础上讲述K-Means的优化变体方法。包括初始化优化K-Means++, 距离计算优化elkan K-Means算法和大数据情况下的优化Mini Batch K-Means算法。
1. K-Means原理初探
K-Means算法的思想很简单,对于给定的样本集,按照样本之间的距离大小,将样本集划分为K个簇。让簇内的点尽量紧密的连在一起,而让簇间的距离尽量的大。
如果用数据表达式表示,假设簇划分之间的随机数为,则我们的目标是最小化平方误差E:
其中是簇的均值向量,有时也称为质心,表达式为:
如果我们想直接求上式的最小值并不容易,这是一个NP难的问题,因此只能采用启发式的迭代方法。K-Means采用的启发式方式很简单,用下面一组图就可以形象的描述。
上图a表达了初始的数据集,假设k=2。在图b中,我们随机选择了两个k类所对应的类别质心,即图中的红色质心和蓝色质心,然后分别求样本中所有点到这两个质心的距离,并标记每个样本的类别为和该样本距离最小的质心的类别,如图c所示,经过计算样本和红色质心和蓝色质心的距离,我们得到了所有样本点的第一轮迭代后的类别。此时我们对我们当前标记为红色和蓝色的点分别求其新的质心,如图4所示,新的红色质心和蓝色质心的位置已经发生了变动。图e和图f重复了我们在图c和图d的过程,即将所有点的类别标记为距离最近的质心的类别并求新的质心。最终我们得到的两个类别如图f。当然在实际K-Mean算法中,我们一般会多次运行图c和图d,才能达到最终的比较优的类别。
读者可以通过下面这个动态图来形象的了解算法的实现过程
2. 传统K-Means算法流程
在上一节我们对K-Means的原理做了初步的探讨,这里我们对K-Means的算法做一个总结。
首先我们看看K-Means算法的一些要点。
1)对于K-Means算法,首先要注意的是k值的选择,一般来说,我们会根据对数据的先验经验选择一个合适的k值,如果没有什么先验知识,则可以通过交叉验证选择一个合适的k值。
2)在确定了k的个数后,我们需要选择k个初始化的质心,就像上图b中的随机质心。由于我们是启发式方法,k个初始化的质心的位置选择对最后的聚类结果和运行时间都有很大的影响,因此需要选择合适的k个质心,最好这些质心不能太近。
好了,现在我们来总结下传统的K-Means算法流程。
输入是样本集,聚类的簇树k,最大迭代次数N
输出是簇划分
1) 从数据集D中随机选择k个样本作为初始的k个质心向量:
2)对于n=1,2,...,N
a) 将簇划分C初始化为
b) 对于i=1,2...m,计算样本和各个质心向量的距离:,将标记最小的为所对应的类别。此时更新
c) 对于j=1,2,...,k,对中所有的样本点重新计算新的质心
e) 如果所有的k个质心向量都没有发生变化,则转到步骤3)
3) 输出簇划分
3. K-Means初始化优化K-Means++
在上节我们提到,k个初始化的质心的位置选择对最后的聚类结果和运行时间都有很大的影响,因此需要选择合适的k个质心。如果仅仅是完全随机的选择,有可能导致算法收敛很慢。K-Means++算法就是对K-Means随机初始化质心的方法的优化。
k-means++算法选择初始seeds的基本思想就是:初始的聚类中心之间的相互距离要尽可能的远。wiki上对该算法的描述是如下:
1,从输入的数据点集合中随机选择一个点作为第一个聚类中心
2,对于数据集中的每一个点x,计算它与最近聚类中心(指已选择的聚类中心)的距离D(x)
3,选择一个新的数据点作为新的聚类中心,选择的原则是:D(x)较大的点,被选取作为聚类中心的概率较大
4,重复2和3直到k个聚类中心被选出来
5,利用这k个初始的聚类中心来运行标准的k-means算法
从上面的算法描述上可以看到,算法的关键是第3步,如何将D(x)反映到点被选择的概率上,一种算法如下:
1,先从我们的数据库随机挑个随机点当“种子点”
2,对于每个点,我们都计算其和最近的一个“种子点”的距离D(x)并保存在一个数组里,然后把这些距离加起来得到Sum(D(x))。
3,然后,再取一个随机值,用权重的方式来取下一个“种子点”。
这个算法的实现是:先取一个能落在Sum(D(x))中的随机值Random,然后用Random -= D(x),直到,Random<=0(注意,这个式子的意思是:在刚才保存的那个数组里,我们从头开始遍历每一个元素的D(x),直到减掉的Random小于0,此时停止),此时的点就是下一个“种子点”。
4,重复2和3直到k个聚类中心被选出来
5,利用这k个初始的聚类中心来运行标准的k-means算法
可以看到算法的第三步选取新中心的方法,这样就能保证距离D(x)较大的点,会被选出来作为聚类中心了。至于为什么原因很简单,如下图 所示:
假设A、B、C、D的D(x)如上图所示,当算法取值Sum(D(x))*random(原作者博客里这样写是因为在编程语言中,random函数产生的是0-1之间的 随机数,所以他用Sum(D(x))*random来表示随机生成一个位于[0-Sum(D(x))]之间的随机数),该值会以较大的概率落入D(x)较大的区间内,所以对应的点会以较大的概率被选中作为新的聚类中心。
4. K-Means距离计算优化elkan K-Means
在传统的K-Means算法中,我们在每轮迭代时,要计算所有的样本点到所有的质心的距离,这样会比较的耗时。那么,对于距离的计算有没有能够简化的地方呢?elkan K-Means算法就是从这块入手加以改进。它的目标是减少不必要的距离的计算。那么哪些距离不需要计算呢?elkan K-Means利用了两边之和大于等于第三边,以及两边之差小于第三边的三角形性质,来减少距离的计算。
第一种规律是对于一个样本点x和两个质心μj1,μj2。如果我们预先计算出了这两个质心之间的距离D(j1,j2),则如果计算发现2D(x,j1)≤D(j1,j2),我们立即就可以知道
。此时我们不需要再计算,也就是说省了一步距离计算。
第二种规律是对于一个样本点和两个质心。我们可以得到这个从三角形的性质也很容易得到。
利用上边的两个规律,elkan K-Means比起传统的K-Means迭代速度有很大的提高。但是如果我们的样本的特征是稀疏的,有缺失值的话,这个方法就不使用了,此时某些距离无法计算,则不能使用该算法。
5. 大样本优化Mini Batch K-Means
在传统的K-Means算法中,要计算所有的样本点到所有的质心的距离。如果样本量非常大,比如达到10万以上,特征有100以上,此时用传统的K-Means算法非常的耗时,就算加上elkan K-Means优化也依旧。在大数据时代,这样的场景越来越多。此时Mini Batch K-Means应运而生。
顾名思义,Mini Batch,也就是用样本集中的一部分的样本来做传统的K-Means,这样可以避免样本量太大时的计算难题,算法收敛速度大大加快。当然此时的代价就是我们的聚类的精确度也会有一些降低。一般来说这个降低的幅度在可以接受的范围之内。
在Mini Batch K-Means中,我们会选择一个合适的批样本大小batch size,我们仅仅用batch size个样本来做K-Means聚类。那么这batch size个样本怎么来的?一般是通过无放回的随机采样得到的。
为了增加算法的准确性,我们一般会多跑几次Mini Batch K-Means算法,用得到不同的随机采样集来得到聚类簇,选择其中最优的聚类簇。
6. K-Means(K-近邻学习)与KNN(k-近邻估计)
初学者很容易把K-Means和KNN搞混,两者其实差别还是很大的。
K-Means是无监督学习的聚类算法,没有样本输出;而KNN是监督学习的分类算法,有对应的类别输出。KNN基本不需要训练,对测试集里面的点,只需要找到在训练集中最近的k个点,用这最近的k个点的类别来决定测试点的类别。而K-Means则有明显的训练过程,找到k个类别的最佳质心,从而决定样本的簇类别。
当然,两者也有一些相似点,两个算法都包含一个过程,即找出和某一个点最近的点。两者都利用了最近邻(nearest neighbors)的思想。
7. K-Means小结
K-Means是个简单实用的聚类算法,这里对K-Means的优缺点做一个总结。
K-Means的主要优点有:
1)原理比较简单,实现也是很容易,收敛速度快。
2)聚类效果较优。
3)算法的可解释度比较强。
4)主要需要调参的参数仅仅是簇数k。
K-Means的主要缺点有:
1)K值的选取不好把握
2)对于不是凸的数据集比较难收敛
3)如果各隐含类别的数据不平衡,比如各隐含类别的数据量严重失衡,或者各隐含类别的方差不同,则聚类效果不佳。
4) 采用迭代方法,得到的结果只是局部最优。
5) 对噪音和异常点比较的敏感。
以上是关于八:聚类算法K-means(20191223-29)的主要内容,如果未能解决你的问题,请参考以下文章