hadoop MapReduce java示例
Posted
tags:
篇首语:本文由小常识网(cha138.com)小编为大家整理,主要介绍了hadoop MapReduce java示例相关的知识,希望对你有一定的参考价值。
wordcount工作流程
input-> 拆分Split->映射map->派发Shuffle->缩减reduce->output
hadoop jar /usr/local/hadoop/share/hadoop/mapreduce/hadoop-mapreduce-examples-2.7.3.jar wordcount 10803060234.txt /output
package wordcount;
import java.io.IOException;
import org.apache.hadoop.conf.Configuration;
import org.apache.hadoop.fs.Path;
import org.apache.hadoop.io.IntWritable;
import org.apache.hadoop.io.LongWritable;
import org.apache.hadoop.io.Text;
import org.apache.hadoop.mapreduce.Job;
import org.apache.hadoop.mapreduce.lib.input.FileInputFormat;
import org.apache.hadoop.mapreduce.lib.output.FileOutputFormat;
public class Test {
public Test() {
// TODO Auto-generated constructor stub
}
public static void main(String[] args) throws Exception {
// TODO Auto-generated method stub
Configuration conf = new Configuration();
conf.set("fs.defaultFS","hdfs://172.26.19.40:9000");
conf.set("mapreduce.job.jar", "target/wc.jar");
conf.set("mapreduce.framework.name", "yarn");
conf.set("yarn.resourcemanager.hostname", "hmaster");
conf.set("mapreduce.app-submission.cross-platform", "true");
Job job = Job.getInstance(conf);
job.setMapperClass(WordMapper.class);
job.setReducerClass(WordReducer.class);
job.setMapOutputKeyClass(Text.class);
job.setMapOutputValueClass(IntWritable.class);
job.setOutputKeyClass(Text.class);
job.setOutputValueClass(LongWritable.class);
FileInputFormat.setInputPaths(job, "");
FileOutputFormat.setOutputPath(job, new Path(""));
job.waitForCompletion(true);
}
}
package wordcount;
import java.io.IOException;
import org.apache.hadoop.io.IntWritable;
import org.apache.hadoop.io.LongWritable;
import org.apache.hadoop.io.Text;
import org.apache.hadoop.mapreduce.Mapper;
public class WordMapper extends Mapper<LongWritable, Text, Text, IntWritable> {
@Override
protected void map(LongWritable key, Text value, Mapper<LongWritable, Text, Text, IntWritable>.Context context)
throws IOException, InterruptedException {
String lineValue = value.toString();
String[] words = lineValue.split(" ");
IntWritable cIntWritable = new IntWritable(1);
for(String word : words) {
context.write(new Text(word), cIntWritable);
}
}
}
package wordcount;
import java.io.IOException;
import org.apache.hadoop.io.IntWritable;
import org.apache.hadoop.io.LongWritable;
import org.apache.hadoop.io.Text;
import org.apache.hadoop.mapreduce.Reducer;
public class WordReducer extends Reducer<Text, IntWritable, Text, LongWritable> {
@Override
protected void reduce(Text key, Iterable<IntWritable> values,
Reducer<Text, IntWritable, Text, LongWritable>.Context context) throws IOException, InterruptedException {
Long tmpCount = 0L;
for(IntWritable value : values) {
tmpCount = tmpCount + value.get();
}
context.write(key, new LongWritable(tmpCount));
}
}
<project xmlns="http://maven.apache.org/POM/4.0.0" xmlns:xsi="http://www.w3.org/2001/XMLSchema-instance"
xsi:schemaLocation="http://maven.apache.org/POM/4.0.0 http://maven.apache.org/xsd/maven-4.0.0.xsd">
<modelVersion>4.0.0</modelVersion>
<groupId>com.skcc</groupId>
<artifactId>wordcount</artifactId>
<version>0.0.1-SNAPSHOT</version>
<name>wordcount</name>
<description>count the word</description>
<properties>
<project.build.sourceencoding>UTF-8</project.build.sourceencoding>
<hadoop.version>2.7.3</hadoop.version>
</properties>
<dependencies>
<dependency>
<groupId>junit</groupId>
<artifactId>junit</artifactId>
<version>4.12</version>
</dependency>
<dependency>
<groupId>org.apache.hadoop</groupId>
<artifactId>hadoop-client</artifactId>
<version>${hadoop.version}</version>
</dependency>
<dependency>
<groupId>org.apache.hadoop</groupId>
<artifactId>hadoop-common</artifactId>
<version>${hadoop.version}</version>
</dependency>
<dependency>
<groupId>org.apache.hadoop</groupId>
<artifactId>hadoop-hdfs</artifactId>
<version>${hadoop.version}</version>
</dependency>
</dependencies>
</project>
以上是关于hadoop MapReduce java示例的主要内容,如果未能解决你的问题,请参考以下文章
Big Data - Hadoop - MapReduce初学Hadoop之图解MapReduce与WordCount示例分析
初学Hadoop之图解MapReduce与WordCount示例分析