Hadoop-MapReduce
Posted
tags:
篇首语:本文由小常识网(cha138.com)小编为大家整理,主要介绍了Hadoop-MapReduce相关的知识,希望对你有一定的参考价值。
在之前建立的HDFS基础上,自己编写MapReduce程序,打包,并运行。
重新打包WordCount并执行
新建一个Maven项目,将示例程序中WordCount.java的复制到新项目中,使用mvn clean package打包为jar文件并复制到服务器。
WordCount.java内容如下:
public class WordCount {
public static class TokenizerMapper
extends Mapper<Object, Text, Text, IntWritable>{
private final static IntWritable one = new IntWritable(1);
private Text word = new Text();
public void map(Object key, Text value, Context context
) throws IOException, InterruptedException {
StringTokenizer itr = new StringTokenizer(value.toString());
while (itr.hasMoreTokens()) {
word.set(itr.nextToken());
context.write(word, one);
}
}
}
public static class IntSumReducer
extends Reducer<Text,IntWritable,Text,IntWritable> {
private IntWritable result = new IntWritable();
public void reduce(Text key, Iterable<IntWritable> values,
Context context
) throws IOException, InterruptedException {
int sum = 0;
for (IntWritable val : values) {
sum += val.get();
}
result.set(sum);
context.write(key, result);
}
}
public static void main(String[] args) throws Exception {
Configuration conf = new Configuration();
String[] otherArgs = new GenericOptionsParser(conf, args).getRemainingArgs();
if (otherArgs.length < 2) {
System.err.println("Usage: wordcount <in> [<in>...] <out>");
System.exit(2);
}
Job job = Job.getInstance(conf, "word count");
job.setJarByClass(WordCount.class);
job.setMapperClass(TokenizerMapper.class);
job.setCombinerClass(IntSumReducer.class);
job.setReducerClass(IntSumReducer.class);
job.setOutputKeyClass(Text.class);
job.setOutputValueClass(IntWritable.class);
for (int i = 0; i < otherArgs.length - 1; ++i) {
FileInputFormat.addInputPath(job, new Path(otherArgs[i]));
}
FileOutputFormat.setOutputPath(job,
new Path(otherArgs[otherArgs.length - 1]));
System.exit(job.waitForCompletion(true) ? 0 : 1);
}
}
在服务器上创建一个test.txt文件,内容为:
This is a test.
将文件复制到HDFS中:
hadoop/bin/hdfs dfs -put test.txt /mrtest/input
使用下面的命令执行WorkCount:
hadoop/bin/hadoop jar hadoop-mapreduce-demo-0.0.1-SNAPSHOT.jar com.u3dspace.hadoop.mapreduce.demo.WordCount /mrtest/input /mrtest/output
查看输出结果:
hadoop/bin/hdfs dfs -cat /mrtest/output/part-r-00000
This 1
a 1
is 1
test. 1
自定义Writable
定义一个类CountWritable:
public class CountWritable implements Writable {
private int count;
public CountWritable() {
this.count = 0;
}
public CountWritable(int count) {
this.count = count;
}
public int getCount() {
return count;
}
public void setCount(int count) {
this.count = count;
}
public void readFields(DataInput in) throws IOException {
this.count = in.readInt();
}
public void write(DataOutput out) throws IOException {
out.writeInt(this.count);
}
@Override
public String toString() {
return Integer.toString(this.count);
}
}
将刚才示例中的IntWritable换成CountWritable,打包到服务器执行,输出的结果和上一次相同。
依赖第三方jar包
当需要使用第三方jar包时,简单的方法是在打包时将第三方jar包也打进去,Maven中配置一个plugin,如下:
<build>
<plugins>
<plugin>
<artifactId>maven-assembly-plugin</artifactId>
<configuration>
<descriptorRefs>
<descriptorRef>jar-with-dependencies</descriptorRef>
</descriptorRefs>
<archive>
<manifest>
<mainClass></mainClass>
</manifest>
</archive>
</configuration>
<executions>
<execution>
<id>make-assembly</id>
<phase>package</phase>
<goals>
<goal>single</goal>
</goals>
</execution>
</executions>
</plugin>
</plugins>
</build>
然后使用mvn package打包后,在target/目录下会多一个以-jar-with-dependencies.jar为后缀的jar包,在服务器执行这个jar包即可。
使用yarn执行MapReduce任务
修改配置文件
修改hadoop/etc/hadoop/mapred-site.xml,使其configuration节点内容如下:
<configuration>
<property>
<name>mapreduce.framework.name</name>
<value>yarn</value>
</property>
</configuration>
修改hadoop/etc/hadoop/yarn-site.xml,使其configuration节点内容如下:
<configuration>
<property>
<name>yarn.nodemanager.aux-services</name>
<value>mapreduce_shuffle</value>
</property>
</configuration>
启动yarn
使用下面的命令启动yarn:
hadoop/sbin/start-yarn.sh
浏览器访问yarn用户界面
默认端口为8088,如使用后面的地址访问:http://52.69.38.114:8088/
提交MapReduce任务
使用之前的命令提交一个MapReduce任务,如:
hadoop/bin/hadoop jar hadoop-mapreduce-demo-0.0.1-SNAPSHOT.jar com.u3dspace.hadoop.mapreduce.demo.WordCount /mrtest/input /mrtest/output
在浏览器的yarn界面下,可看到提交的任务及执行情况。
以上是关于Hadoop-MapReduce的主要内容,如果未能解决你的问题,请参考以下文章