cs231n spring 2017 lecture1 听课笔记

Posted ZonghaoChen

tags:

篇首语:本文由小常识网(cha138.com)小编为大家整理,主要介绍了cs231n spring 2017 lecture1 听课笔记相关的知识,希望对你有一定的参考价值。

1. 生物学家做实验发现脑皮层对简单的结构比如角、边有反应,而通过复杂的神经元传递,这些简单的结构最终帮助生物体有了更复杂的视觉系统。1970年David Marr提出的视觉处理流程遵循这样的原则,拿到图像后,先提取角、边、曲线等等简单的几何元素,然后再用深度信息、表面信息等更高层的复杂信息,最后是更高层的更抽象的表达。 深度学习也是遵循这样的基本思想,从最简单的特征出发,通过多层函数传递,实现复杂的功能。

2. Image-Net比赛,2012年突破性的变化,AlexNet用卷积神经网络大幅提高了准确率,之后这种方法成为了主流,层数越来越多,2015年微软用了100多层的网络。之后这种比赛的意义就不大了,因为确实用更多的层数会有更好地效果(比如200层),但对GPU等硬件提出了要求,而且识别率已经超过人类了。

3. 深度学习并不是一下子火起来,2012年的AlexNet本质上和1998年LeCun识别字母的论文一样的。促成近些年深度学习的最主要原因一是硬件的进步,二是数据量的增加。

以上是关于cs231n spring 2017 lecture1 听课笔记的主要内容,如果未能解决你的问题,请参考以下文章

cs231n spring 2017 lecture9 听课笔记

cs231n spring 2017 lecture3 听课笔记

cs231n spring 2017 lecture7 听课笔记

cs231n spring 2017 lecture4 听课笔记

cs231n spring 2017 lecture8 听课笔记

cs231n spring 2017 lecture12 听课笔记