cs231n spring 2017 lecture9 听课笔记

Posted ZonghaoChen

tags:

篇首语:本文由小常识网(cha138.com)小编为大家整理,主要介绍了cs231n spring 2017 lecture9 听课笔记相关的知识,希望对你有一定的参考价值。

参考《deeplearning.ai 卷积神经网络 Week 2 听课笔记》。

 

1. AlexNet(Krizhevsky et al. 2012),8层网络。

  学会计算每一层的输出的shape:对于卷积层,输出的边长 =(输入的边长 - filter的边长)/ 步长 + 1,输出的通道数等于filter的数量。每个filter的通道数等于输入的通道数。卷积层的参数 = filter的长 * filter的宽 * 输入的通道数 * filter的数量。池化层没有需要学习的参数。

  图中分成两个通道是为了在不同GPU上处理。

  2013年的ZFNet延续了AlexNet的架构(也是8层网络),优化了参数,取得了更好的效果(错误率从16.4%降到11.7%)。

 

2. VGGNet(Simonyan and Zisserman, 2014),16~19层网络。

  三个3*3的filter串联等价于一个7*7的filter,用更小的filter的好处是增加了网络的深度,增加了非线性程度,更少的参数。

 

3. GoogLeNet(Szegedy et al., 2014)

  Inception module是同时用不同的filter(1*1,3*3,5*5,Pooling),并把结果堆叠起来。这样做的缺点是计算量变大。解决的办法是先用1*1的卷积压缩通道数量(参考《deeplearning.ai 卷积神经网络 Week 2 听课笔记》)。

 

4. ResNet(He et al., 2015),152层网络。

  解决了很深的网络难优化的问题。

  对于深度的网络(ResNet-50+),类似GoogLeNet用1*1的卷积层去压缩通道数以提高效率。

 

5. 复杂度的比较

 

6. 其他一些网络

  Network in Network (NiN)(Lin et al., 2014):启发了GoogLeNet和ResNet的“bottleneck”层(1*1卷积层)。

  Identity Mappings in Deep Residual Networks (He et al., 2016):ResNet的改进。

  Wide Residual Networks (Zagoruyko et al., 2016):认为residuals是很重要的,而不是深度。增加宽度而不是深度,会计算更有效。50层的宽的ResNet比152层的原始的ResNet更好。

  ResNeXt (Xie et al., 2016):也是增加宽度,和Inception module很类似的想法。

  Deep Networks with Stochastic Depth (Huang et al., 2016):为了解决梯度消失的问题,随机地drop掉一些层。在测试阶段使用全部的网络,不drop任何层。

  FractalNet (Larsson et al., 2017):认为residual不是必须的,重要的是浅层到深层的有效传递(transitioning),训练阶段也是随机drop掉一些层,测试阶段不drop任何层。

  Densely Connected Convolutional Networks (Huang et al., 2017):为了解决梯度消失的问题,每一层与其他层更稠密的连接。

  SqueezeNet (Landola et al., 2017):更少的参数,更好的准确度。

 

7. 总结

  VGG、GoogLeNet、ResNet被广泛应用,现在已经是集成到各个现成框架。

  ResNet是当今最佳,默认选项。

  趋势是越来越深的网络。

  很多研究集中在设计层与层之间的连接方式,为了改善梯度的传播。

  最新的研究在争论深度和宽度,以及residual的必要性。

 

以上是关于cs231n spring 2017 lecture9 听课笔记的主要内容,如果未能解决你的问题,请参考以下文章

cs231n spring 2017 lecture9 听课笔记

cs231n spring 2017 lecture3 听课笔记

cs231n spring 2017 lecture7 听课笔记

cs231n spring 2017 lecture4 听课笔记

cs231n spring 2017 lecture8 听课笔记

cs231n spring 2017 lecture12 听课笔记