cs231n spring 2017 lecture8 听课笔记
Posted ZonghaoChen
tags:
篇首语:本文由小常识网(cha138.com)小编为大家整理,主要介绍了cs231n spring 2017 lecture8 听课笔记相关的知识,希望对你有一定的参考价值。
1. CPU vs. GPU:
CPU核心少(几个),更擅长串行任务。GPU有很多核心(几千个),每一个核都弱,有自己的内存(几个G),很适合并行任务。GPU最典型的应用是矩阵运算。
GPU编程:1)CUDA,只能在英伟达;2)OpenCL类似CUDA,好处是可以跑在任何平台上,但相对慢一些。深度学习可以直接调用现成的库,不用自己写CUDA代码。
用cuDNN比不用快几倍。
深度学习的瓶颈可能不在GPU的运算,而在GPU和数据的通信上,解决办法是:1)把数据读入RAM;2)用SSD而不是HDD;3)用CPU多线程提前读取数据。
2. 深度学习框架:Caffe(UC Berkeley)/Caffe2(Facebook), Torch(NYU, Facebook)/PyTorch(Facebook), Theano(U Montreal)/TensorFlow(Google), Paddle(Baidu), CNTK(Microsoft), MXNet(Amazon).
框架分为static(TensorFlow、Caffe2)和dynamic(PyTorch)。TensorFlow是很安全的选择。PyTorch最适合做研究。TensorFlow和Caffe2更适合实际部署应用。
以上是关于cs231n spring 2017 lecture8 听课笔记的主要内容,如果未能解决你的问题,请参考以下文章
cs231n spring 2017 lecture9 听课笔记
cs231n spring 2017 lecture3 听课笔记
cs231n spring 2017 lecture7 听课笔记
cs231n spring 2017 lecture4 听课笔记