Visdrone数据集Visdrone+YOLOv7结果记录

Posted 少吃蛋糕的倒霉蛋

tags:

篇首语:本文由小常识网(cha138.com)小编为大家整理,主要介绍了Visdrone数据集Visdrone+YOLOv7结果记录相关的知识,希望对你有一定的参考价值。

VisDrone+YOLOv7结果

YOLOv7

训练

  • 命令
python -m torch.distributed.launch --nproc_per_node 4 --master_port 9527 train.py --workers 4 --device 0,1,2,3 --sync-bn --batch-size 32 --
data data/VisDrone.yaml --img 640 640 --cfg cfg/training/yolov7.yaml  --name yolov7_ --hyp data/hyp.scratch.p5.yaml 

分辨率:640*640
结果输出所在文件夹:yolov7_
epoch数量:设置的300 最终跑了140左右

验证集

  • 命令:
python test.py --data data/VisDrone.yaml --img 640 --batch 32   --device 0,1 --weights /disk2/lxs/yolov7/runs/train/yolov7_/weights/best.pt --name yolov7_val --task val
  • 结果
val: Scanning 'datasets/VisDrone/val_list.cache' images and labels... 548 found, 0 missing, 0 empty, 0 corrupted: 100%|███████████████████████████████████████| 548/548 [00:00<?, ?it/s]
               Class      Images      Labels           P           R      mAP@.5  mAP@.5:.95: 100%|█████████████████████████████████████████████████████| 18/18 [00:18<00:00,  1.02s/it]
                 all         548       38759       0.596       0.496       0.496       0.285                                                                                            
          pedestrian         548        8844       0.654       0.543       0.577       0.265                                                                                            
              people         548        5125       0.587       0.512       0.494       0.193                                                                                            
             bicycle         548        1287       0.448       0.267        0.26        0.11                                                                                            
                 car         548       14064       0.782       0.839       0.851       0.588                                                                                            
                 van         548        1975       0.615       0.497       0.503       0.348                                                                                            
               truck         548         750       0.631       0.455       0.469       0.307                                                                                            
            tricycle         548        1045       0.504       0.416       0.385       0.214                                                                                            
     awning-tricycle         548         532       0.362       0.199       0.194        0.12                                                                                            
                 bus         548         251       0.784       0.602       0.629       0.436                                                                                            
               motor         548        4886       0.593       0.635       0.596        0.27                                                                                            
Speed: 7.8/2.0/9.8 ms inference/NMS/total per 640x640 image at batch-size 32                                                                                                            
Results saved to runs/test/yolov7_val                                                                                                                                                   

测试集

  • 命令:
python test.py --data data/VisDrone.yaml --img 640 --batch 32   --device 0,1 --weights /disk2/lxs/yolov7/runs/train/yolov7_/weights/best.pt --name yolov7_test --task test
  • 结果
test: Scanning 'datasets/VisDrone/test_list.cache' images and labels... 1610 found, 0 missing, 0 empty, 0 corrupted: 100%|██████████████████████████████████| 1610/1610 [00:00<?, ?it/s]
               Class      Images      Labels           P           R      mAP@.5  mAP@.5:.95: 100%|█████████████████████████████████████████████████████| 51/51 [00:37<00:00,  1.34it/s]
                 all        1610       75102       0.534       0.435       0.411        0.23
          pedestrian        1610       21006       0.559       0.388       0.382        0.15
              people        1610        6376       0.544       0.291       0.276      0.0936
             bicycle        1610        1302       0.371       0.198       0.171      0.0706
                 car        1610       28074       0.744       0.798       0.791       0.495
                 van        1610        5771       0.526        0.45       0.439       0.289
               truck        1610        2659       0.565       0.524       0.524       0.332
            tricycle        1610         530       0.335       0.374       0.253       0.135
     awning-tricycle        1610         599       0.423        0.27       0.235       0.136
                 bus        1610        2940       0.754       0.585       0.633       0.441
               motor        1610        5845       0.518       0.467       0.407       0.158
Speed: 7.8/1.2/9.0 ms inference/NMS/total per 640x640 image at batch-size 32
Results saved to runs/test/yolov7_test

以上是关于Visdrone数据集Visdrone+YOLOv7结果记录的主要内容,如果未能解决你的问题,请参考以下文章

目标检测YOLOv6理论解读+实践测试VisDrone数据集

目标检测YOLOR理论简介+实践测试VisDrone数据集

目标检测TPH-YOLOv5:基于transformer的改进yolov5的无人机目标检测

bug记录yolov7 AssertionError: train: No labels in ...train_list.cache. Can not train without

目标检测YOLOv5:640与1280分辨率效果对比

detectron2训练visdrone记录