[python][deepface][原创]使用deepface进行表情识别
Posted FL1623863129
tags:
篇首语:本文由小常识网(cha138.com)小编为大家整理,主要介绍了[python][deepface][原创]使用deepface进行表情识别相关的知识,希望对你有一定的参考价值。
# -*- coding: utf-8 -*-
# Copyright (C) 2022 FIRC. All Rights Reserved
# @Time : 2022/8/10 下午5:41
# @Author : FIRC
# @File : emotion_detect.py
# @Software: PyCharm
# @ Function Description:
'''
function as follows:
'''
import numpy as np
from deepface.basemodels import VGGFace
import tensorflow as tf
import cv2
import os
from deepface.detectors import FaceDetector
from deepface.commons import functions
import tensorflow as tf
tf_version = int(tf.__version__.split(".")[0])
if tf_version == 1:
import keras
from keras.models import Model, Sequential
from keras.layers import Conv2D, MaxPooling2D, AveragePooling2D, Flatten, Dense, Dropout
elif tf_version == 2:
from tensorflow import keras
from tensorflow.keras.models import Model, Sequential
from tensorflow.keras.layers import Conv2D, MaxPooling2D, AveragePooling2D, Flatten, Dense, Dropout
def loadModel(weights='./weights/facial_expression_model_weights.h5'):
num_classes = 7
model = Sequential()
# 1st convolution layer
model.add(Conv2D(64, (5, 5), activation='relu', input_shape=(48, 48, 1)))
model.add(MaxPooling2D(pool_size=(5, 5), strides=(2, 2)))
# 2nd convolution layer
model.add(Conv2D(64, (3, 3), activation='relu'))
model.add(Conv2D(64, (3, 3), activation='relu'))
model.add(AveragePooling2D(pool_size=(3, 3), strides=(2, 2)))
# 3rd convolution layer
model.add(Conv2D(128, (3, 3), activation='relu'))
model.add(Conv2D(128, (3, 3), activation='relu'))
model.add(AveragePooling2D(pool_size=(3, 3), strides=(2, 2)))
model.add(Flatten())
# fully connected neural networks
model.add(Dense(1024, activation='relu'))
model.add(Dropout(0.2))
model.add(Dense(1024, activation='relu'))
model.add(Dropout(0.2))
model.add(Dense(num_classes, activation='softmax'))
# ----------------------------
home = functions.get_deepface_home()
model.load_weights(weights)
return model
detector_backend = 'opencv'
face_detector = FaceDetector.build_model(detector_backend)
emotion_model = loadModel()
emotion_labels = ['Angry', 'Disgust', 'Fear', 'Happy', 'Sad', 'Surprise', 'Neutral']
cap = cv2.VideoCapture(0) # webcam
while True:
ret, img = cap.read()
if img is None:
break
try:
# faces store list of detected_face and region pair
faces = FaceDetector.detect_faces(face_detector, detector_backend, img, align=False)
except: # to avoid exception if no face detected
faces = []
for face, (x, y, w, h) in faces:
if w > 130: # discard small detected faces
roi_img = img[y:y + h, x:x + w]
gray_img = functions.preprocess_face(img=roi_img, target_size=(48, 48), grayscale=True,
enforce_detection=False, detector_backend='opencv')
emotion_predictions = emotion_model.predict(gray_img)[0, :]
print(emotion_predictions)
# print(apparent_age)
cv2.rectangle(img, (x, y), (x + w, y + h), (255, 0, 0), 3) # draw rectangle to main image
cv2.putText(img, 'emotion='.format(emotion_labels[np.argmax(emotion_predictions)]), (x - 10, y), cv2.FONT_HERSHEY_SIMPLEX, 1, (0, 255, 255)
, 3)
cv2.imshow('result', img)
if cv2.waitKey(1) & 0xFF == ord('q'): # press q to quit
break
# kill open cv things
cap.release()
cv2.destroyAllWindows()
以上是关于[python][deepface][原创]使用deepface进行表情识别的主要内容,如果未能解决你的问题,请参考以下文章
[python][deepface][原创]使用deepface进行性别预测
[python][deepface][原创]使用deepface进行表情识别
[python][deepface][原创]使用deepface进行人脸检测
ModuleNotFoundError:没有名为“deepface”的模块