[python][deepface][原创]使用deepface进行性别预测

Posted FL1623863129

tags:

篇首语:本文由小常识网(cha138.com)小编为大家整理,主要介绍了[python][deepface][原创]使用deepface进行性别预测相关的知识,希望对你有一定的参考价值。

from deepface.basemodels import VGGFace
import tensorflow as tf
import cv2
import os
from deepface.detectors import FaceDetector
from deepface.commons import functions
import numpy as np

tf_version = int(tf.__version__.split(".")[0])

if tf_version == 1:
    import keras
    from keras.models import Model, Sequential
    from keras.layers import Convolution2D, Flatten, Activation
elif tf_version == 2:
    from tensorflow import keras
    from tensorflow.keras.models import Model, Sequential
    from tensorflow.keras.layers import Convolution2D, Flatten, Activation


def loadModel(weights='./weights/gender_model_weights.h5'):
    model = VGGFace.baseModel()
    # --------------------------
    classes = 2
    base_model_output = Sequential()
    base_model_output = Convolution2D(classes, (1, 1), name='predictions')(model.layers[-4].output)
    base_model_output = Flatten()(base_model_output)
    base_model_output = Activation('softmax')(base_model_output)
    # --------------------------
    gender_model = Model(inputs=model.input, outputs=base_model_output)
    # --------------------------
    # load weights
    gender_model.load_weights(weights)
    return gender_model


detector_backend = 'opencv'
face_detector = FaceDetector.build_model(detector_backend)
gender_model = loadModel()
cap = cv2.VideoCapture(0)  # webcam
while True:
    ret, img = cap.read()
    if img is None:
        break
    try:
        # faces store list of detected_face and region pair
        faces = FaceDetector.detect_faces(face_detector, detector_backend, img, align=False)
    except:  # to avoid exception if no face detected
        faces = []
    for face, (x, y, w, h) in faces:
        if w > 130:  # discard small detected faces
            roi_img = img[y:y + h, x:x + w]
            face_224 = functions.preprocess_face(img=roi_img, target_size=(224, 224), grayscale=False,
                                                 enforce_detection=False, detector_backend='opencv')
            gender_prediction = gender_model.predict(face_224)[0, :]
            if np.argmax(gender_prediction) == 0:
                gender = "female"
            elif np.argmax(gender_prediction) == 1:
                gender = "male"

            # print(apparent_age)
            cv2.rectangle(img, (x, y), (x + w, y + h), (255, 0, 0), 3)  # draw rectangle to main image
            cv2.putText(img, 'age='.format(gender), (x - 10, y), cv2.FONT_HERSHEY_SIMPLEX, 1, (0, 255, 255)
                        , 3)
        cv2.imshow('result', img)
        if cv2.waitKey(1) & 0xFF == ord('q'):  # press q to quit
            break
# kill open cv things
cap.release()
cv2.destroyAllWindows()

以上是关于[python][deepface][原创]使用deepface进行性别预测的主要内容,如果未能解决你的问题,请参考以下文章

[python][deepface][原创]使用deepface进行性别预测

[python][deepface][原创]使用deepface进行表情识别

[python][deepface][原创]使用deepface进行人脸检测

ModuleNotFoundError:没有名为“deepface”的模块

如何使用 DeepFace.detectFace() 实际检测图像中的多个人脸?

DeepFace 用于提取图像的矢量信息