JAVA二叉树的基本操作
Posted 现实之后的感悟
tags:
篇首语:本文由小常识网(cha138.com)小编为大家整理,主要介绍了JAVA二叉树的基本操作相关的知识,希望对你有一定的参考价值。
目录
记录二叉树的基本操作DEMO
1、创建一个二叉树类
2、然后创建二叉树的节点
记录二叉树的基本操作DEMO
1、创建一个二叉树类
这里约束了泛型只能为实现了Comparable这个接口的类型。
/**
* @author JackHui
* @version BinaryTree.java, 2020年03月05日 12:45
*/
public class BinaryTree<T extends Comparable> {
//树根
BinaryTreeNode root;
public boolean deleteData(T data) {
if (root.data.equals(data)) {
root = null;
return true;
}
return root.deleteNode(data);
}
public T frontSearch(T data) {
return (T) root.frontSearch(data);
}
public T midSearch(T data) {
return (T) root.midSearch(data);
}
public T rearSearch(T data) {
return (T) root.rearSearch(data);
}
public void frontEach() {
this.root.frontEach();
}
public void midEach() {
this.root.midEach();
}
public void rearEach() {
this.root.rearEach();
}
public BinaryTreeNode getRoot() {
return root;
}
public void setRoot(BinaryTreeNode root) {
this.root = root;
}
}
2、然后创建二叉树的节点
package binarytree;
/**
* @author JackHui
* @version BinaryTreeNode.java, 2020年03月06日 10:24
*/
public class BinaryTreeNode<T extends Comparable> {
T data;
BinaryTreeNode lChild;
BinaryTreeNode rChild;
public BinaryTreeNode(T data) {
this.data = data;
}
//先序遍历
public void frontEach() {
System.out.print(this.data + "\\t");
if (lChild != null) {
lChild.frontEach();
}
if (rChild != null) {
rChild.frontEach();
}
}
//中序遍历
public void midEach() {
if (lChild != null) {
lChild.frontEach();
}
System.out.print(this.data + "\\t");
if (rChild != null) {
rChild.frontEach();
}
}
//后序遍历
public void rearEach() {
if (lChild != null) {
lChild.frontEach();
}
if (rChild != null) {
rChild.frontEach();
}
System.out.print(this.data + "\\t");
}
//先序查找
public T frontSearch(T data) {
T target = null;
System.out.println("[先序遍历]当前遍历到的元素:" + this.data + "\\t查找的元素:" + data + "\\t" + (this.data.compareTo(data) == 0 ? "查找到元素:" + data : ""));
if (this.data.compareTo(data) == 0) {
return data;
} else {
if (lChild != null && (target = (T) lChild.frontSearch(data)) != null) {
return target;
}
if (rChild != null && (target = (T) rChild.frontSearch(data)) != null) {
return target;
}
}
return target;
}
//中序查找
public T midSearch(T data) {
T target = null;
if (lChild != null && (target = (T) lChild.midSearch(data)) != null) {
return target;
}
System.out.println("[中序遍历]当前遍历到的元素:" + this.data + "\\t查找的元素:" + data + "\\t" + (this.data.compareTo(data) == 0 ? "查找到元素:" + data : ""));
if (this.data.compareTo(data) == 0) {
return data;
} else {
if (rChild != null && (target = (T) rChild.midSearch(data)) != null) {
return target;
}
}
return target;
}
//后序查找
public T rearSearch(T data) {
T target = null;
if (lChild != null && (target = (T) lChild.rearSearch(data)) != null) {
return target;
}
if (rChild != null && (target = (T) rChild.rearSearch(data)) != null) {
return target;
}
System.out.println("[后续遍历]当前遍历到的元素:" + this.data + "\\t查找的元素:" + data + "\\t" + (this.data.compareTo(data) == 0 ? "查找到元素:" + data : ""));
if (this.data.compareTo(data) == 0) {
return data;
}
return target;
}
//根据值删除节点
public boolean deleteNode(T data) {
System.out.println("[节点删除]当前遍历到的父节点:" + this.data + "\\t" + "匹配的节点数据:" + data);
//判断左子树是否匹配
if (this.lChild != null && (this.lChild.data.compareTo(data) == 0)) {
System.out.println("[节点删除]当前遍历到的父节点:" + this.data + "\\t" + "匹配的节点数据:" + data + "\\t节点删除成功!");
this.lChild = null;
return true;
} else if (this.rChild != null && (this.rChild.data.compareTo(data) == 0)) {
System.out.println("[节点删除]当前遍历到的父节点:" + this.data + "\\t" + "匹配的节点数据:" + data + "\\t节点删除成功!");
this.rChild = null;
return true;
}
if (this.lChild != null && this.lChild.deleteNode(data)) {
return true;
}
if (this.rChild != null && this.rChild.deleteNode(data)) {
return true;
}
return false;
}
public T getData() {
return data;
}
public void setData(T data) {
this.data = data;
}
public BinaryTreeNode getlChild() {
return lChild;
}
public void setlChild(BinaryTreeNode lChild) {
this.lChild = lChild;
}
public BinaryTreeNode getrChild() {
return rChild;
}
public void setrChild(BinaryTreeNode rChild) {
this.rChild = rChild;
}
}
到此这篇关于JAVA二叉树的基本操作DEMO的文章就介绍到这了
以上是关于JAVA二叉树的基本操作的主要内容,如果未能解决你的问题,请参考以下文章