mRNA在翻译过程中与核糖体作用的几个特殊位点以及解说
Posted
tags:
篇首语:本文由小常识网(cha138.com)小编为大家整理,主要介绍了mRNA在翻译过程中与核糖体作用的几个特殊位点以及解说相关的知识,希望对你有一定的参考价值。
比如说A,P,等位点,谁能帮我解释一下啊!多谢啦啊!
麻烦啦
所有真核生物mRNA 5′端都有帽子结构,早在1976年Shtkin就根据体外翻译实验结果指出,5′端帽子有增强翻译效率的作用。此后众多研究证实,大多数mRNA的翻译依赖于帽子结构。
除了帽子外,真核生物mRNA的3′端大都有polyA尾巴,在许多体内实验和高活性的体外翻译体系中都观察到,mRNA polyA结构与翻译效率有直接的关系,带polyA的mRNA比无polyA尾巴的相应mRNA的翻译效率高得多。5′端帽子和3′端polyA能够协同地调节mRNA的翻译效率。进一步研究表明,真核生物翻译起始过程中,polyA被PABP所结合,通过PABP影响翻译。
PABP在真核生物中高度保守,含有4个RNA识别模体(RNA recognition motif, RRM)。Sachs等首先证明,PABP参与翻译起始。PABP能协助60S亚基与40S亚基结合从而促使80S核糖体的形成〔5〕。生化方面的证据也揭示了PABP在翻译起始中的作用。无论是polyA还是5′端帽子结构都不能单独作用于翻译,而只能协同作用,PABP在此过程中参与帽子和其起始因子的相互作用〔3、6〕。可能PABP可以直接与CBP作用或通过一个中介物间接作用(如图1),通过这种相互作用,mRNA的两末端在空间上十分靠近而形成环状。这与40多年前电子显微照相观察到多核糖体是环状的实验结果一致。可能真核生物就是通过两末端作用而提高翻译效率的。
图1 翻译起始mRNA两末端的相互作用
如果在溶菌酶的体外翻译体系中加入外源polyA,蛋白质的合成就受抑制,这表明外源polyA结合(squester)了一种翻译必须成分。Gallie等还发现,没有帽子结构的mRNA的抑制效应比有帽子的mRNA大,表明含5′端帽子的mRNA能高效竞争易被外源polyA结合的某成分。而且,加入纯化的eIF4F和eIF4B能逆转polyA导致的抑制效应。可见,这种外源polyA所结合的成分就是eIF4F、eIF4B。虽然这些因子能直接作用于polyA,但是它们与polyA的亲合力只有它们与PABP的亲合力的二分之一左右〔7〕。对此最可能的解释是,polyA与eIF4F、eIF4B的结合是通过PABP/polyA复合物和各因子间的蛋白质-蛋白质相互作用完成的。
在酵母和植物中,PABP与eIF4F(eIFiso4F)的大亚基eIF4G(eIFiso4G)直接作用而促进40S亚基与mRNA结合〔7、8〕。但哺乳动物的PABP却不和eIF4G直接作用。最近在哺乳动物中发现了一个与eIF4G具一定同源性的PABP作用蛋白,PAIP-1。Craig等〔9〕就此提出了一个模型,认为哺乳动物PABP和eIF4A以PAIP-1为中介而在polyA和5′-UTR间形成一个桥,5′端帽子和polyA对翻译起始的协同作用或许是按以下步骤完成的:eIF4A通过与eIF4G作用而召集于5′端帽子,而帽子反过来又促进eIF4A的召集反应(图1),然后eIF4A以PAIP-1为中介与PABP作用〔4、9〕。在植物中,不但eIF4F(eIFiso4F)和eIF4B能分别提高PABP对polyA的亲和力,而且两者还能协同影响PABP对polyA的结合力。提示PABP、eIF4F、eIF4B三因子间必有一个功能上的相互作用〔7〕。而在哺乳动物体内,eIF4F含量较低,为提高翻译效率,eIF4F与PABP结合以分别提高它们与帽子及polyA的结合〔4〕。
PABP与其相关起始因子的分子间相互作用受细胞间PABP和mRNA浓度的控制,在一定浓度下,polyA(很可能是与PABP共同作用)能选择性提高体外mRNA的翻译。而且,两末端的这种PABP参与的分子间相互作用对翻译前mRNA的完整性起着检测作用,从而可以阻止不完整的mRNA的翻译。PABP在起始中参与分子间作用的另一个原因,也许是通过两末端靠近促进再起始。已有证据表明,40S亚基在翻译结束后仍与mRNA结合在一起;与mRNA结合的核糖体能被优先召集。在GCN4 ORF的上游有 4个小的上游开放阅读框(suORF)。GCN4 mRNA为了翻译远端开放阅读框,40S亚基在近端suORF翻译后仍与mRNA结合着。随着第一suORF翻译的终止及60S亚基的脱离,仍有50%的40S亚基与mRNA结合继续进行扫描,从而提高翻译效率。
40S亚基在翻译终止后,仍结合于mRNA的3′-UTR有利于再起始,而3′-UTR长度决定其结合的时间。翻译效率低的mRNA往往利用这种机制,构建一系列3′-UTR长度不一的mRNA,随着3′-UTR长度加长,翻译效率也提高。3′-URT越长,翻译终止后,核糖体仍结合于3′-UTR的时间也长,从而提高了它们的召集反应。而且在此过程中,结合在mRNA上的40S亚基浓度比已从mRNA上脱离的40S亚基浓度高。PABP/polyA复合物和eIF4F/5′端帽子复合物可能便于再召集〔4〕。
2. 两末端的相互作用提高mRNA稳定性
PABP和CBP的相互作用不但能促进高效翻译起始,而且在维持mRNA的完整性方面也起着重要作用〔4、9〕。在酵母和哺乳动物中,mRNA在降解时,去polyA的反应发生于去帽子之前。polyA首先降解导致PABP从mRNA上释放,随着PABP的释放,5′端帽子被去帽子酶DcplP切掉,整个mRNA也迅速被5′→3′RNA核糖体外切酶XrnlP降解。PABP从mRNA上的释放使5′端帽子易受攻击,PABP在此过程中起了保护作用。PABP能增强植物eEF4F和帽子结构的结合,说明PABP是以eIF4G为中介通过稳定eIF4E与帽子的结合以发挥其功能〔2〕。而在哺乳动物中,mRNA的去polyA发生在5′ 端帽子降解之前,说明PABP很可能以PAIP-1为中介促进eIF4F与帽子结合而发挥其保护作用〔4〕。
3. mRNA两端功能性作用的调节
有多种内外因素调节mRNA 5′端帽子和polyA的相互作用,如蛋白质修饰等。哺乳动物细胞培养时,当血清饥饿时翻译受抑制,反之翻译又被激活。此外,胰岛素也能以浓度依赖的方式诱导血清饥饿细胞帽子/polyA协同作用促进翻译,说明对PABP和帽子相关起始因子相互作用的调节(可能以PAIP-1为中介)是胰岛素信号转导途径的一部分〔11〕。胰岛素的调节可能是通过蛋白因子磷酸化来完成的〔4〕。如诱导eIF4E发生磷酸化,从而提高了它与帽子结合的活性,或促使eIF4E结合蛋白发生磷酸化,促进eIF4E与eIF4G的相互作用,最终影响eIF4A的召集,从而影响其与PAIP-1作为两末端间“桥”的作用。
基因诱导是另一种调节两末端功能性作用的方式。研究发现,T细胞被激活后诱导产生PAIP-1,然后PAIP-1与polyA结合蛋白(iPABP)作用〔9〕。
环境胁迫如热激,一方面能使多核糖体快速解体,另一方面使mRNA的帽子和polyA的相互作用下降而抑制翻译。热激直接或间接地使与PABP结合的蛋白因子的磷酸化状态发生变化,如使哺乳动物eIF4E和eIF4B〔1〕、植物eIF4B〔11〕发生去磷酸化。去磷酸化直接降低了植物eIF4F/eIF4B和PABP的作用;而在哺乳动物中,去磷酸化间接降低eIF4A的召集及其与PAIP-1/PABP/polyA复合物作用的机会,从而抑制翻译。
4. 无polyA和帽子的mRNA末端相互作用的功能
研究表明,没有polyA或帽子结构的mRNA的两末端也能发生相互作用对翻译起作用。哺乳动物中的细胞周期调控组蛋白的mRNA没有polyA,但其5′端有一个保守的茎环结构,该结构是核胞质转运和调控不同细胞周期时mRNA稳定性所必需的。同时发现它对以茎环结构终止的哺乳动物mRNA的高效翻译也是必需的。这种茎环结构类似于polyA,它作为调节因子的活性依赖于5′端帽子,表明5′端帽子和茎环结构间也存在相互作用。
在病毒中发现了一些有polyA而没有5′端帽子的mRNA,如番茄蚀刻病毒的基因组mRNA,利用一个5′端前导序列代替5′端帽子授于mRNA进行不依赖帽子的翻译功能。5′端前导序列就象5′端帽子一样和polyA发生相互作用,促进高效翻译。但是,介导这种相互作用及细胞周期调控组蛋白mRNA两末端作用的蛋白因子仍在研究之中。
其它一些缺帽子或polyA的病毒RNA两端也显示了功能性相互作用,这种作用是通过与帽子或polyA功能类似的RNA元件来完成的。如TMV mRNA没有polyA,但含有一个20bp的3′-UTR,具有与polyA相似的功能。此3′-UTR是一个包含5个RNA假结(pseudo-knots)和一个类似tRNA的末端区域的高级结构。
没有polyA或帽子结构的非保守mRNA的研究说明,开放阅读框旁侧的序列元件或许是高效翻译的基础。关于蛋白质翻译机制还有许多问题仍不清楚,环状mRNA翻译可能就是蛋白质翻译机制之一,这还有待进一步研究。 参考技术A 核糖体至少有5个活性中心:mRNA 结合部位,氨酰-tRNA结合部位(A),肽基-tRNA结合部位,肽基转移部位(P)及肽键形成部位(转肽酶中心),氨酰-tRNA进入A位,在转肽酶作用下与P位的肽基-tRNA形成肽键。
参考资料:现代分子生物学 朱玉贤,李毅主编,第二版
参考技术B 壮!!!!!!!!!!1前言 转录组
转录组
转录组(Transcriptome),广义上指在相同环境(或生理条件)下的一个细胞、或一群细胞中所能转录出的所有RNA的总和,包括 信使RNA(mRNA)、核糖体RNA(rRNA)、转运RNA(tRNA)以及非编码RNA(ncRNA);狭义上则指转录出的信使RNA(mRNA)。
转录组学
转录组学(Transcriptomics),是分子生物学的一个分支,研究在单个细胞或特定类型细胞/组织/器官或发育阶段的细胞群内所生产的各类RNA分子的类型和数量。
转录组测定的是样本表达的基因丰度及其类型(例如,可变剪切)。每个细胞里面的每一种mRNA分子的平均数称为该种mRNA的丰度,根据丰度可把mRNA群体分为两大类:
- 高丰度mRNA,通常由细胞里不到100种的mRNA(每种mRNA分子拷贝数为1000~10000)组成,占总mRNA的50%左右。
- 稀有mNRA,或复杂mRNA,由长度不等的种类繁多的序列组成,每种序列只有少量的拷贝。
高丰度mRNA在不同类型细胞中有很大区别。例如,卵清蛋白只在输卵管细胞里合成而不在肝脏内合成,其mRNA占输卵管细胞mRNA总量的一半,但高丰度mRNA只占基因表达数的很小一部分。
稀有mRNA大部分是许多,甚至是所有类型细胞所共有的,包括了各种类型细胞所需的功能。编码这种类型的功能的基因,有时被称为“持家基因”或“组成型基因”,;编码特定细胞特定功能的基因,称为“奢侈基因”。
研究方法
应用
-
干细胞和癌细胞转录组研究可以帮助研究人员了解细胞分化和癌变过程
-
分析人类卵母细胞和胚胎的转录组用于了解控制早期胚胎发育的分子机制和信号通路,理论上可以成为在体外人工受精中进行适当胚胎选择的有力工具
-
用于新药研究或化学品的安全性风险评估
-
推断系统发育关系
参考资料
以上是关于mRNA在翻译过程中与核糖体作用的几个特殊位点以及解说的主要内容,如果未能解决你的问题,请参考以下文章