用matlab求解整数规划双角标问题
Posted
tags:
篇首语:本文由小常识网(cha138.com)小编为大家整理,主要介绍了用matlab求解整数规划双角标问题相关的知识,希望对你有一定的参考价值。
参考技术A 详情见下。运筹学理论上,如不加特殊说明,一般指整数线性规划。对于整数线性规划模型大致可分为两类:
1、变量全限制为整数时,称纯(完全)整数规划。
2、变量部分限制为整数的,称混合整数规划。
理论求解方法分类:
(i)分枝定界法—可求纯或混合整数线性规划。
(ii)割平面法—可求纯或混合整数线性规划。
(iii)隐枚举法—求解“0-1”整数规划:①过滤隐枚举法;②分枝隐枚举法。
(iv)匈牙利法—解决指派问题(“0-1”规划特殊情形)。
(v)蒙特卡洛法—求解各种类型规划。
整数线性规划可以用linprog函数,help里有超级详细的说明,0-1整数规划可以用bintprog函数。
路径规划基于matlab麻雀算法求解机器人栅格地图最短路径规划问题含Matlab源码 1582期
一、简介
路径规划是实现移动机器人自主导航的关键技术,是指在有障碍物的环境中,按照一定的评价标准(如距离、时间、能耗等),寻找到一条从起始点到目标点的无碰撞路径,这里选取最短距离路径规划的评价标准,即最短路径规划问题。
1.路径规划数学模型的建立
将移动机器人周围环境用一组数据进行抽象表达,建立二维或三维的环境模型,得到移动机器人能够理解分析的环境数据,是机器人路径规划的基本前提。我这里用的是栅格法,其原理是将周围环境看成一个二维平面,将平面分成一个个等面积大小的具有二值信息的栅格,每个栅格中存储着周围环境信息量,下图我给出了一个栅格法地图,方便大家更好的理解栅格地图。这里设计的栅格地图为一个20×20的地形矩阵,黑色的地方表示有障碍,白色的地方表示没有障碍。
图1 栅格法地图
在用栅格法建立环境模型时,为了将环境信息转换成移动机器人可以识别的数据,一般采用序号法标记环境地图信息,即将栅格地图中一个个栅格从序号1依次累加直到标记到最后一个栅格。如图2所示。
图3 八叉树搜索策略
那么,怎么判断一个栅格点是否为另一个栅格点的相邻栅格点呢,另外,又怎么判断是否为有障碍栅格呢。这就需建立矩阵D,记录每个栅格点至其相邻栅格点的代价值。本例中栅格地图有20×20个栅格点,则D的大小为400×400,其中列是起点栅格,行是局部终点栅格,各栅格点至其各相邻无障碍栅格点的代价值非零,而有障碍栅格及非相邻栅格设为0。
二、部分源代码
clc
clear
close all
tic
%% 地图
G=[0 0 0 0 0 0 1 1 1 0 0 0 0 0 0 0 0 0 0 0;
0 0 0 0 0 0 1 1 1 0 0 0 0 0 0 0 0 0 0 0;
0 0 0 0 0 0 1 1 1 0 0 0 0 0 0 0 0 0 0 0;
0 0 0 0 0 0 1 1 1 0 0 0 0 0 0 0 0 0 0 0;
0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0;
0 1 1 1 0 0 1 1 1 0 0 0 0 0 0 0 0 0 0 0;
0 1 1 1 0 0 1 1 1 0 0 0 0 0 0 0 0 0 0 0;
0 1 1 1 0 0 1 1 1 0 1 1 1 1 0 0 0 0 0 0;
0 1 1 1 0 0 0 0 0 0 1 1 1 1 0 0 0 0 0 0;
0 0 0 0 0 0 0 0 0 0 1 1 1 1 0 0 0 0 0 0;
0 0 0 0 0 0 0 1 1 0 1 1 1 1 0 0 0 0 0 0;
0 0 0 0 0 0 0 1 1 0 1 1 1 1 0 0 0 0 0 0;
0 0 0 0 0 0 0 0 0 0 0 0 1 1 0 1 1 1 1 0;
0 0 0 0 0 0 0 0 0 0 0 0 1 1 0 1 1 1 1 0;
1 1 1 1 0 0 0 0 0 0 0 0 1 1 0 1 1 1 1 0;
1 1 1 1 0 0 1 1 0 0 0 1 0 0 0 0 0 0 0 0;
0 0 0 0 0 0 1 1 0 1 1 1 0 0 0 0 0 1 1 0;
0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1 1 0;
0 0 1 1 0 0 0 0 0 0 1 1 0 0 1 0 0 0 0 0;
0 0 0 0 0 0 0 0 0 0 1 1 0 0 0 0 0 0 0 0;];
for i=1:20/2
for j=1:20
m=G(i,j);
n=G(21-i,j);
G(i,j)=n;
G(21-i,j)=m;
end
end
%%
S = [1 1];
E = [20 20];
G0 = G;
G = G0(S(1):E(1),S(2):E(2));
[Xmax,dimensions] = size(G);
dimensions = dimensions - 2;
%% 参数设置
max_gen = 200; % 最大迭代次数
num_polution = 50; % 种群数量
soft_value = 0.8; %安全值
recover_Percent = 0.3; %%发现者比例
scout_Percent = 0.2; %%侦查者比例
recover_Num = round( num_polution * recover_Percent ); % %发现者
scout_Num = round(num_polution * scout_Percent); %%侦查者数量
X_min = 1;
%% 初始化
X = zeros(num_polution,dimensions);
for i = 1:num_polution
for j = 1:dimensions
column = G(:,j+1); % 地图的一列
id = find(column == 0); % 该列自由栅格的位置
X(i,j) = id(randi(length(id))); % 随机选择一个自由栅格
id = [];
end
fit( i ) = fitness(X( i, : ),G);%%%行向量
end
fit_person_best = fit; % 个体最优适应度
person_best = X; % 个体最优位置
[fit_global_best, best_person_Index] = min( fit ); % 全局最优适应度
global_best = X(best_person_Index, : ); % 全局最优位置
[fit_max,B]=max(fit);
worse_person= X(B,:);
%%
for gene = 1:max_gen
gene
[ans1,sort_Index] = sort(fit); %适应值度从小到大排序
[fit_max,B] = max(fit);
worse_person = X(B,:); %找出适应度最差的个体
[~,Index] = sort(fit_person_best);
r2 = rand(1);
if r2 < soft_value
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
for i = 1:recover_Num
r1 = rand(1);
X(Index(i),:) = person_best(Index(i),:)*exp(-(i)/(r1*max_gen)); %%%%%发现者广泛进行搜索操作
X(Index(i),:) = Bounds(X(Index(i),:), X_min,Xmax); %%%%输出整数路径
fit(Index(i)) = fitness(X(Index(i),:),G);
end
else
X(Index(i),:) = person_best(Index(i),:) + randn(1)*ones(1,dimensions); %%%%%%%飞往其他地方觅食
X(Index(i),:) = Bounds(X(Index(i),:),X_min,Xmax);
fit(Index(i)) = fitness(X(Index(i),:),G);
end
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%发现者%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
[fit_MMin,best_best] = min(fit);
best_best_bt = X(best_best,:);
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
for i = (recover_Num+1):num_polution
A = floor(rand(1,dimensions)*2)*2-1; %%%%%%%%-1到1的随机数
if(i>(num_polution/2))
X(Index(i),:) = randn(1)*exp((worse_person-person_best(Index(i),:))/(i)^2);%%%%%%%适应度较低的个体没有获得食物,将飞往其他地方随机范围
else
X(Index(i),:) = best_best_bt+(abs((person_best(Index(i),:)-best_best_bt)))*(A'*(A*A')^(-1))*ones(1,dimensions); %%%%%%%中等适应度值的个体更新位置
end
X(Index(i),:) = Bounds(X(Index(i),:),X_min,Xmax);
fit(Index(i)) = fitness(X(Index(i),:),G);
end
p_1 = randperm(numel(sort_Index));
p_2 = sort_Index(p_1(1:scout_Num));
for j = 1:length(p_2)
if(fit_person_best(Index(p_2(j)))>(fit_global_best))
X(Index(p_2(j)),:) = global_best+(randn(1,dimensions)).*(abs((person_best(Index( p_2(j)),:) -global_best)));%%%%%%%%意识到危险的麻雀向种群适应度最高的个体靠拢
else
如何用MATLAB求解0-1整数规划?