判定数据序列平稳与否的方法有哪些?
Posted
tags:
篇首语:本文由小常识网(cha138.com)小编为大家整理,主要介绍了判定数据序列平稳与否的方法有哪些?相关的知识,希望对你有一定的参考价值。
1、 时间序列 取自某一个随机过程,如果此随机过程的随机特征不随时间变化,则我们称过程是平稳的;假如该随机过程的随机特征随时间变化,则称过程是非平稳的。2、 宽平稳时间序列的定义:设时间序列 ,对于任意的 , 和 ,满足:
则称 宽平稳。
3、Box-Jenkins方法是一种理论较为完善的统计预测方法。他们的工作为实际工作者提供了对时间序列进行分析、预测,以及对ARMA模型识别、估计和诊断的系统方法。使ARMA模型的建立有了一套完整、正规、结构化的建模方法,并且具有统计上的完善性和牢固的理论基础。
4、ARMA模型三种基本形式:自回归模型(AR:Auto-regressive),移动平均模型(MA:Moving-Average)和混合模型(ARMA:Auto-regressive Moving-Average)。
(1) 自回归模型AR(p):如果时间序列 满足
其中 是独立同分布的随机变量序列,且满足:
,
则称时间序列 服从p阶自回归模型。或者记为 。
平稳条件:滞后算子多项式 的根均在单位圆外,即 的根大于1。
(2) 移动平均模型MA(q):如果时间序列 满足
则称时间序列 服从q阶移动平均模型。或者记为 。
平稳条件:任何条件下都平稳。
(3) ARMA(p,q)模型:如果时间序列 满足
则称时间序列 服从(p,q)阶自回归移动平均模型。或者记为 。
特殊情况:q=0,模型即为AR(p),p=0, 模型即为MA(q)。
二、时间序列的自相关分析
1、自相关分析法是进行时间序列分析的有效方法,它简单易行、较为直观,根据绘制的自相关分析图和偏自相关分析图,我们可以初步地识别平稳序列的模型类型和模型阶数。利用自相关分析法可以测定时间序列的随机性和平稳性,以及时间序列的季节性。
2、自相关函数的定义:滞后期为k的自协方差函数为: ,则 的自相关函数为: ,其中 。当序列平稳时,自相关函数可写为: 。
3、 样本自相关函数为: ,其中 ,它可以说明不同时期的数据之间的相关程度,其取值范围在-1到1之间,值越接近于1,说明时间序列的自相关程度越高。
4、 样本的偏自相关函数:
其中, 。
5、 时间序列的随机性,是指时间序列各项之间没有相关关系的特征。使用自相关分析图判断时间序列的随机性,一般给出如下准则:
①若时间序列的自相关函数基本上都落入置信区间,则该时间序列具有随机性;
②若较多自相关函数落在置信区间之外,则认为该时间序列不具有随机性。
6、 判断时间序列是否平稳,是一项很重要的工作。运用自相关分析图判定时间序列平稳性的准则是:①若时间序列的自相关函数 在k>3时都落入置信区间,且逐渐趋于零,则该时间序列具有平稳性;②若时间序列的自相关函数更多地落在置信区间外面,则该时间序列就不具有平稳性。
7、 ARMA模型的自相关分析
AR(p)模型的偏自相关函数 是以p步截尾的,自相关函数拖尾。MA(q)模型的自相关函数具有q步截尾性,偏自相关函数拖尾。这两个性质可以分别用来识别自回归模型和移动平均模型的阶数。ARMA(p,q)模型的自相关函数和偏相关函数都是拖尾的。
三、单位根检验和协整检验
1、单位根检验
①利用迪基—福勒检验( Dickey-Fuller Test)和菲利普斯—佩荣检验(Philips-Perron Test),我们也可以测定时间序列的随机性,这是在计量经济学中非常重要的两种单位根检验方法,与前者不同的事,后一个检验方法主要应用于一阶自回归模型的残差不是白噪声,而且存在自相关的情况。
②随机游动
如果在一个随机过程中, 的每一次变化均来自于一个均值为零的独立同分布,即随机过程 满足: , ,其中 独立同分布,并且:
,
称这个随机过程是随机游动。它是一个非平稳过程。
③单位根过程
设随机过程 满足: , ,其中 , 为一个平稳过程并且 , , 。
2、协整关系
如果两个或多个非平稳的时间序列,其某个现性组合后的序列呈平稳性,这样的时间序列间就被称为有协整关系存在。这是一个很重要的概念,我们利用Engle-Granger两步协整检验法和Johansen协整检验法可以测定时间序列间的协整关系。
四、ARMA模型的建模
1、模型阶数的确定
①基于自相关函数和偏相关函数的定阶方法
对于ARMA(p,q)模型,可以利用其样本的自相关函数 和样本偏自相关函数 的截尾性判定模型的阶数。
具体方法如下:
i、对于每一个q,计算 , ,…, (M取为 或者 ),考察其中满足 或者 的个数是否占M个的68.3%或者95.5%。如果 , 都明显地异于零,而 , ,…, 均近似于零,并且满足上述不等式之一的 的个数达到其相应的比例,则可以近似的判定 是 步截尾,平稳时间序列 为MA( )。
ii、类似,我们可通过计算序列 ,考察其中满足 或者 的个数是否占M个的68.3%或者95.5%。即可以近似的判定 是 步截尾,平稳时间序列 为AR( ).
iii、如果对于序列 和 来说,均不截尾,即不存在上述的 和 ,此时属于情况iii,则可以判定平稳时间序列 为ARMA模型。
此外常用的方法还有:②基于F-检验确定阶数;③利用信息准则法定阶(AIC准则和BIC准则)
2、模型参数的估计
①初估计
i、 AR(p)模型参数的Yule-Walker估计
特例:对于一阶自回归模型AR(1), ,对于二阶自回归模型AR(2), , 。
ii、MA(q)模型参数估计
特例:对于一阶移动平均模型MA(1), ,对于二阶移动平均模型MA(2), , 。
iii、ARMA(p,q)模型的参数估计
模型很复杂,一般利用统计分析软件包完成。
②精估计
ARMA(p,q)模型参数的精估计,一般采用极大似然估计,由于模型结构的复杂性,无法直接给出参数的极大似然估计,只能通过迭代方法来完成,这时,迭代初值常常利用初估计得到的值。
3、ARMA(p,q)序列预报
设平稳时间序列 是一个ARMA(p,q)过程,则其最小二乘预测: 。
i、AR(p)模型预测
,
ii、ARMA(p,q)模型预测
,其中 。
iii、预测误差
预测误差为: 。l步线性最小方差预测的方差和预测步长l有关,而与预测的时间原点t无关。预测步长l越大,预测误差的方差也越大,因而预测的准确度就会降低。所以一般不能用ARMA(p,q)作为长期预测模型。
iv、预测的置信区间
预测的95%置信区间:
不知道对你有没帮助 参考技术A 方法一:图示法,观察四点,是否围绕常值波动、波动是否有界、有无周期性、有无明显变化趋势,这种方法缺点是比较主观,只能用来识别非平稳序列
方法二:观察自相关系数截尾特征,就是拖尾和截尾,具体参考相关资料吧
方法三:单位根检验 参考技术B 这个会考么? 参考技术C 1、 时间序列 取自某一个随机过程,如果此随机过程的随机特征不随时间变化,则我们称过程是平稳的;假如该随机过程的随机特征随时间变化,则称过程是非平稳的。
2、 宽平稳时间序列的定义:设时间序列 ,对于任意的 , 和 ,满足: 则称 宽平稳。
3、Box-Jenkins方法是一种理论较为完善的统计预测方法。他们的工作为实际工作者提供了对时间序列进行分析、预测,以及对ARMA模型识别、估计和诊断的系统方法。使ARMA模型的建立有了一套完整、正规、结构化的建模方法,并且具有统计上的完善性和牢固的理论基础。
4、ARMA模型三种基本形式:自回归模型(AR:Auto-regressive),移动平均模型(MA:Moving-Average)和混合模型(ARMA:Auto-regressive Moving-Average)。
(1) 自回归模型AR(p):如果时间序列 满足
其中 是独立同分布的随机变量序列,且满足:
,
则称时间序列 服从p阶自回归模型。或者记为 。
平稳条件:滞后算子多项式 的根均在单位圆外,即 的根大于1。
(2) 移动平均模型MA(q):如果时间序列 满足
则称时间序列 服从q阶移动平均模型。或者记为 。
平稳条件:任何条件下都平稳。
(3) ARMA(p,q)模型:如果时间序列 满足
则称时间序列 服从(p,q)阶自回归移动平均模型。或者记为 。
特殊情况:q=0,模型即为AR(p),p=0, 模型即为MA(q)。
2、模型参数的估计
①初估计
i、 AR(p)模型参数的Yule-Walker估计
特例:对于一阶自回归模型AR(1), ,对于二阶自回归模型AR(2), , 。
ii、MA(q)模型参数估计
特例:对于一阶移动平均模型MA(1), ,对于二阶移动平均模型MA(2), , 。
iii、ARMA(p,q)模型的参数估计
模型很复杂,一般利用统计分析软件包完成。
②精估计
ARMA(p,q)模型参数的精估计,一般采用极大似然估计,由于模型结构的复杂性,无法直接给出参数的极大似然估计,只能通过迭代方法来完成,这时,迭代初值常常利用初估计得到的值。
3、ARMA(p,q)序列预报
设平稳时间序列 是一个ARMA(p,q)过程,则其最小二乘预测: 。
i、AR(p)模型预测
,
ii、ARMA(p,q)模型预测
,其中 。
iii、预测误差
预测误差为: 。l步线性最小方差预测的方差和预测步长l有关,而与预测的时间原点t无关。预测步长l越大,预测误差的方差也越大,因而预测的准确度就会降低。所以一般不能用ARMA(p,q)作为长期预测模型。
iv、预测的置信区间
预测的95%置信区间:
不知道对你有没帮助
时间序列分析中数据的平稳性判定研究 范涛涛,寇艳廷
时间序列的平稳性判定是时间序列分析预测的关键技术,为了根据数据特征提供更为可靠合理的平稳性判定 方法,从数据平稳条件入手比较分析了时间路径图、自相关函数、DF检测和ADF检测四种方法的数学原理。以股票数据为 应用背景,采用EViews工具对时间序列的平稳性判定进行了实验仿真和对比分析,得出对于复杂的时间序列多种检测方法 综合检验更为可靠的结论,为随机过程中数据分析预测的进一步研究提供数据预处理的技术参考。
以上是关于判定数据序列平稳与否的方法有哪些?的主要内容,如果未能解决你的问题,请参考以下文章